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Preface

The Workshop on Self-sustaining Systems (S3) is a forum for the discussion of
topics relating to computer systems and languages that are able to bootstrap,
implement, modify, and maintain themselves. One property of these systems is
that their implementation is based on small but powerful abstractions; examples
include (amongst others) Squeak/Smalltalk, COLA, Klein/Self, PyPy/Python,
Rubinius/Ruby, and Lisp. Such systems are the engines of their own replacement,
giving researchers and developers great power to experiment with, and explore
future directions from within, their own small language kernels.

S3 took place on May 15–16, 2008 at the Hasso-Plattner-Institute (HPI) in
Potsdam, Germany. It was an exciting opportunity for researchers and practi-
tioners interested in self-sustaining systems to meet and share their knowledge,
experience, and ideas for future research and development. S3 provided an op-
portunity for a community to gather and discuss the need for self-sustainability
in software systems, and to share and explore thoughts on why such systems are
needed and how they can be created and deployed. Analogies were made, for
example, with evolutionary cycles, and with urban design and the subsequent
inevitable socially-driven change.

The S3 participants left with a greater sense of community and an enthusiasm
for probing more deeply into this subject. We see the need for self-sustaining
systems becoming critical not only to the developer’s community, but to end-
users in business, academia, learning and play, and so we hope that this S3
workshop will become the first of many.

We would like to thank our invited speakers for their insightful and provoca-
tive talks, our presenters for their technical contributions, our members of the
program committee for their constructive reviews, all participants for their in-
terest, and the local organizers for their exemplary support.

June 2008 Robert Hirschfeld
Kim Rose
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Open, Extensible Object Models

Ian Piumarta and Alessandro Warth

Viewpoints Research Institute
1209 Grand Central Avenue
Glendale, CA 91201, USA

ian@vpri.org

Abstract. Programming languages often hide their implementation at
a level of abstraction that is inaccessible to programmers. Decisions and
tradeoffs made by the language designer at this level (single vs. multiple
inheritance, mixins vs. Traits, dynamic dispatch vs. static case analysis,
etc.) cannot be repaired easily by the programmer when they prove in-
convenient or inadequate. The artificial distinction between implementa-
tion language and end-user language can be eliminated by implementing
the language using only end-user objects and messages, making the imple-
mentation accessible for arbitrary modification by programmers. We show
that three object types and five methods are sufficient to bootstrap an ex-
tensible object model and messaging semantics that are described entirely
in terms of those same objects and messages. Raising the implementation
to the programmers’ level lets them design and control their own imple-
mentation mechanisms in which to express concise solutions and frees the
original language designer from ever having to say “I’m sorry”.

1 Introduction

Most programming languages and systems make a clear distinction between
the implementation level in which the system is built and the ‘end-user’ level
in which programs are subsequently written. The abstractions and semantics
provided by these programming systems are effectively immutable. Metaobject
Protocols (MOPs) [5] are designed to give back some power to programmers,
letting them extend the system with new abstractions and semantics. We are
interested in a different approach to solving the same problem where we eliminate
the distinction between the implementation and user levels of the programming
system.

As an example of the problem we are trying to solve, consider the implementa-
tion of a Lisp-like language with several atomic object types. The implementer
must choose a representation for these objects in some (typically lower-level)
implementation language. The choice of representation can have a profoundly
limiting effect on the ability of both the implementer and end-user to extend
the language with new types, primitive functionality and semantics at some
later time. Our Lisp-like end-user language might have C as its implementation
language and use a discriminated union to store atomic objects and ‘cons’ cells:

R. Hirschfeld and K. Rose (Eds.): S3 2008, LNCS 5146, pp. 1–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 I. Piumarta and A. Warth

enum ObjectTag { Number, String, Symbol, Cons };
struct Object {
enum ObjectTag tag;

union {
struct Number number;

struct String string;

struct Symbol symbol;

struct Cons cons;

} payload;

};

With this representation, each primitive in the end user language that manipu-
lates data would use conditional (if or switch) statements to select appropriate
behaviour according to the tag field.

This simple object model has already made significant design decisions and
rendered them immutable:

– All objects must start with an integer tag field.
– The internal layout of the four intrinsic types cannot be modified at runtime.

The consequences of these decisions include:

– New payloads cannot be added by end user code, especially if they require
more storage than the intrinsic types.

– New tags cannot be added unless all primitives are explicitly designed to
work in the presence of arbitrary tags, or the user is in a position to un-
derstand, modify and then recompile every part of the base language imple-
mentation that might be concerned with object tags.

We could start to address these problems by creating a more general object
model for our structured data, for example by adding a size field to allow
for arbitrary payloads. Unfortunately each such change adds complexity to the
language runtime and imposes more ‘meta-structure’ in the objects, ultimately
making them less amenable to unanticipated deep modifications in the future.

These problems are even more severe when we consider object-oriented lan-
guages. The object model for a simple prototype-based language might specify
‘method dictionary’ and ‘parent’ slots in every object. The runtime would look
up a message name in the receiver’s methodDictionary, trying again in the
parent object’s method dictionary if no match is found, continuing until finding
a match or reaching the end of the parent chain. Adding multiple delegation to
this language would be difficult because the runtime assumes that the parent
field contains a single object and not, for example, a list of parent objects to try
in turn.

The trouble is that some of the semantics of the above example (single del-
egation between instances) are reified eagerly in the execution mechanisms of
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the language. This in turn eagerly imposes supporting meta-structure (instances
chained through a parent slot) within the objects. Since the execution mecha-
nisms are expressed in an implementation language at a lower level of abstraction
than that of the end user language, neither the mechanisms nor their effects on
object structure can be modified by end users. Moreover, adapting the implemen-
tation machinery for reuse in supporting a different end-user language is more
difficult when the required changes are pervasive and expressed in a low-level
implementation language. In this paper we present an object model intended to
eliminates most of these problems:

– Weshowhowanobject-basedmodel of data canhelp alleviate someof the prob-
lems of extensibility in programming language implementation (Section 2).

– We define a simple, extensible object model that imposes no structure on
end-user objects (Section 3).

– The end-user object model provides message-passing semantics implemented
using its own objects and messaging mechanism, making the semantics of
messaging modifiable or even replaceable from within the end-user language.
We show that three kinds of object and five small methods are sufficient to
achieve this (Section 3.1).

– The flexibility gained by exposing the object model’s semantics is illustrated
by showing that it can be extended easily to support language features in-
cluding multiple inheritance and mixed-mode execution [10] (Sections 2.2
and 3).

– We validate the use of this approach for production systems by showing that:
it has low space overhead (Section 5); its performance can be competitive
with, and in some cases even better than, equivalent ‘static’ implementation
techniques (Section 5.3); existing object models can be easily implemented
on top of the model (Section 5.1); advanced compositional techniques such
as Traits [11] can be accommodated (Section 5.2).

2 The Object Model by Example

The object model describes one thing: how an object responds to a message.
Each object is associated with a vtable object. When a message is sent to an
object O, its vtable V is asked to find the appropriate method to run. This is
done by sending the message ‘lookup’ to V , with the message name as argument.
The semantics of sending a message to O are therefore determined entirely by
V ’s response to the ‘lookup’ message. By overriding (or redefining) ‘lookup’ we
can change the semantics of message sending for some (or all) objects.

The vtable object doesn’t have to be a table. It can determine the method
to run for a given message send in any way it wants. Often, though, vtables are
simply dictionaries mapping message names onto method implementations.

This section introduces the object model by using it to solve two of the
problems mentioned in the introduction: adding a new atomic object type to
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a Lisp-like language and converting single delegation to multiple delegation in a
message-passing language.

2.1 Adding Data Types to a Language

For our Lisp-like language we might have a length primitive that tells us how
many elements are present in a string or list. Using the tag field in the Object
structure to discriminate the type of payload, length might look like this:

int length(struct Object *object)

{
switch (object->tag)

{
case Number: error("numbers have no length");

case String: return object->payload.string.length;

case Symbol: error("symbols have no length");

case Cons: return object->payload.cons.cdr

? 1 + length(object->payload.cons.cdr)

: 1;

default: error("illegal tag");

}
}

Let’s add a vector type to this language. We have to extend the above switch
statement with a new case to take into account our new data type and its tag
value:

case Vector: return object->payload.vector.length;

This isn’t too bad if we are the only user of the language and we have access
to the source code of the implementation. However, the situation is much worse
if we want to share the new type with other users of the language, possibly as
a third-party extension; any primitive that is not modified with an additional
case to handle vectors will cause a run-time error.

It would be better to store the relevant case implementation from each prim-
itive function in the data type itself. Using our object model the new data
type is added to the language by creating a new vtable (object behaviour) and
then installing its primitives as methods in the vtable. Figure 1 shows what
this would look like in our object model, again using C as the implementation
language.

This is more than advocating an object-oriented style of programming lan-
guage construction. Consider the same Lisp-like language implemented in C++.
Even if the length primitive was made a virtual function of each supported data
type, we would have to recompile every file after adding Vector since the lay-
out of C++ vtables is computed at compile time; adding a new virtual method
would invalidate all previous assumptions about the vtable layout.
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struct vtable *Vector vt = 0;

int Vector length(struct Vector *vector) {
return vector->length;

}

void initialise(void) {
...

Vector vt = send(vtable, s allocate,

sizeof(struct vtable));

send(Vector vt, s addMethod, s length, Vector length);

...

}

int length(struct object *object) {
return send(object, s length);

}

Fig. 1. Creating a new type and associating functionality with it. The vtable Vector vt

describes the behaviour of the new type. Invoking the method s addMethod in it
makes an association between the selector s length and the method implementation
Vector length. The length primitive can now simply invoke the method s length in
any object and expect it to respond appropriately regardless of the number of data
types supported by—or added to—the language. (The variables prefixed with s are
symbols: interned, unique strings suitable for identifying method names.)

Perhaps more compelling is an example involving an object-oriented language
that uses the object model and that can directly modify the semantics of its own
messaging mechanism.

2.2 Adding Multiple Inheritance to a Prototype-Based Language

This example uses a high-level, prototype-based programming language with
single delegation that uses the object model directly for its end user objects.1

We will use this language for several examples. Its syntax is very close to that
of Smalltalk [4] with a few small differences (described in Appendix A).

Everything in our object model is an object, including the vtables that de-
scribe the behaviour of objects. Interacting with vtables is just a matter of
invoking methods in them. One such method is called lookup; it takes a method
name as an argument and returns a corresponding method implementation. By
overriding (or redefining) this method we can change the semantics of message
sending for some (or all) objects.

The prototype-based language provides the programmer with single inheri-
tance; a given family of objects inherits behaviour from a parent family (with

1 This language is written entirely in itself and can be downloaded, along with many
examples including those presented in this paper, from
http://piumarta.com/software/cola

http://piumarta.com/software/cola
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ParentList : List ()

vtable addParent: aVtable

[

parent isNil

ifTrue: [parent := aVtable]

ifFalse:

[parent isParentList

ifTrue: [parent add: aVtable]

ifFalse: [parent := ParentList new

add: parent;

add: aVtable;

yourself]]

]

ParentList lookup: messageName

[

| method |
self do: [:aVtable |

(method := aVtable lookup: messageName) notNil

ifTrue: [↑method]].
↑nil

]

Fig. 2. Adding multiple inheritance to a prototype-based language. We will store multi-
ple parents in ParentList objects; these extend (inherit behaviour from) List without
adding any additional state. We tell vtable how to addParent: by converting a single
parent vtable into a ParentList if necessary, then adding the new parent vtable to
the list. Next we define lookup: for ParentList to search for the messageName in each
parent consecutively. (The lookup: method already installed in vtable can be left in
place; it performs a depth-first search up the inheritance chain by invoking lookup: in
its parent slot, which can now be either a vtable or a ParentList.)

all families eventually inheriting behaviour from Object). Figure 2 shows how
the programmer can directly add multiple inheritance to this language, with-
out loss of performance.2 With these additions to the language, and given three
prototype families C1, C2 and C3

C1 : Object ()

C1 m [ ’this is m’ putln ]

C2 : Object()

C2 n [ ’this is n’ putln ]

C3 : C1 () "C3 inherits from C1"

2 The message sending mechanism uses a method cache to memoize the result of
invoking lookup in a given vtable for a given messageName. The overhead of iterating
through multiple parents is incurred only when the method cache misses, which is
rarely [2].
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the programmer can now dynamically add C2 as a parent of C3

C3 vtable addParent: C2 vtable

so that objects in its family can execute methods inherited from both C1 and
C2:

C3 new

m; "inherited from C1"

n "inherited from C2"

A serious implementation would of course have to take state and behavioural
conflicts into account, although this could be as simple as allowing only one
parent to be stateful and disallowing duplicated message names. (Our imple-
mentation of Traits [11] in Section 5.2 illustrates this.)

3 Open, Extensible Object Models

An object typically describes both state and behaviour that acts on (or is in-
fluenced by) that state. We might account for both state and behaviour in the
object model, but it would be simpler to model just one of them and then use
it to provide the other indirectly. We choose to model (and expose) behaviour
as a set of methods that are invoked in an object by name; access to state, if
appropriate, is then provided through ‘accessor’ methods.3

Figure 3 illustrates this simple model: an object is some opaque quantity in
which a method can be invoked by name; we call the set of methods associated
with a given object its behaviour. Since we wish to avoid imposing structure on
end user objects, the description of behaviour is stored separately from the object
in a manner similar to most object-oriented languages; in particular, parent slots
and method tables are not stored in objects. An object is therefore a tuple of
behaviour and state. Since the behaviour is decoupled from the internal state
of the object it can be replaced and/or shared as desired, or even associated
implicitly with the object.4

Figure 4 shows the layout of objects in memory. An ordinary object pointer
(oop) points to the first byte of the object’s internal state (if any). The object’s
behaviour is described by a virtual table (vtable). A pointer to the vtable is
placed immediately before the object’s state, at offset -1 relative to the pointer.
This is done to preserve pointer identity for objects that encapsulate a foreign
structure, facilitating communication with the operating system and libraries. It
also allows compiled methods, identified by the address of their first instruction,
to be full-fledged objects.

A vtable is an object too, as shown in Figure 5, and has a reference to the
‘vtable for vtables’ before its internal state. This ‘vtable for vtables’ is its own
3 The discussion of related work (Section 6) mentions Self, a system that made the

opposite choice of modeling behaviour as a special kind of state.
4 In the prototype language, tagged (odd) pointers and the null pointer are implicitly

associated with vtables for the behaviour of small integers and nil, respectively.
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M ?

M
?

B

?’ ?’’

Fig. 3. Minimal object model. An object is some opaque state ? on which a method
M can be invoked by name. To implement this model we need a mapping from method
names to method implementations. So, to invoke a method M in the object ? we find
the corresponding method implementation in a behaviour description B. An object
is therefore a tuple of behaviour B and state ?. Since behaviour is separate from the
object it describes, it is possible to share any given behaviour B between several distinct
objects ?, ?’, ?’’, . . .

object’s vtableobject
pointer

?
increasing

memory
addresses

Fig. 4. Implementation of minimal object. An object pointer (oop) points to the start
of the object’s internal state (if any). The object’s behaviour is described by a virtual
table (vtable). A pointer to the vtable is placed one word before the object’s state.

vtable’s vtablevtable
pointer

native codeselector

vtable for vtables

Fig. 5. Internals of vtables. A vtable maps a message name (selector) onto the ad-
dress of the native code that implements the corresponding method. The mapping
is determined by the vtable’s response to the lookup message, which is bound to an
implementation by the ‘vtable for vtables’.

vtable, as shown in Figure 6. It provides a default implementation of the lookup
method (for all vtables) that maps message names onto method implementations.
The state within a vtable supports this mapping. The lookup method therefore
dictates the internal structure of all vtables, but there is nothing special about
the initial ‘vtable vtable’ nor the structure of vtables; a new ‘vtable vtable’ can
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S -> I
lookup: -> <impl>

object’s vtable
vtable’s vtable

vtable’s vtable

object
pointer

? ?

object’s vtable
object

vtable’s vtable

indirectly determines internal structure

Fig. 6. Everything is an object. Every object has a vtable that describes its behaviour.
A method is looked up in a vtable by invoking its lookup method. Hence there is a
‘vtable vtable’ that provides an implementation of lookup for all vtables in the system,
including for itself. The implementation of this lookup method is the only thing in the
object model that imposes internal structure on vtables.

Table 1. Essential objects and methods. For vtables, addMethod creates an association
from a message name to a method implementation, lookup queries the associations to
find an implementation corresponding to a message name, delegated creates a new
vtable that will delegate unhandled messages to the receiver, and allocate creates
a new object within the vtable’s family (by copying the receiver into the new ob-
ject’s vtable slot). We include symbol’s intern method in this list since the end user
must have some way to (re)construct the name of a method. The vtables for vtable

and symbol delegate to the vtable for object, to ease the creation of singly-rooted
hierarchies in which these types are reused directly as end-user object types.

type method

object

symbol intern

vtable addMethod

vtable lookup

vtable allocate

vtable delegated

be created at any time to provide a new lookup method that implements a
family of vtables with arbitrarily different semantics and internal structure.5

3.1 Essential Objects and Methods

Table 1 lists the three essential object types and the five essential methods
that they implement. These methods are described below, with implementations
5 The method addMethod, described below, also depends on the internal structure of

vtables and would be overridden in parallel with the lookup method when changing
their structure.



10 I. Piumarta and A. Warth

let SymbolList = EmptyList

function symbol intern(self, string) =

foreach symbol in SymbolList

if string = symbol.string

return symbol

let symbol = new symbol(string)

append(SymbolList, symbol)

return symbol

Fig. 7. Method symbol.intern. Symbols are unique strings. A lazy implementer would
co-opt a vtable into use as a SymbolList holding previously-interned symbols.

function vtable addMethod(self, symbol, method) =

foreach i in 1 .. self.size
if self.keys[i] = symbol

self.values[i] := method

return
append(self.keys, symbol)

append(self.values, method)

Fig. 8. Method vtable.addMethod. If the method name symbol is already present, re-
place the method associated with it. Otherwise add a new association between the
name and the method.

function vtable lookup(self, symbol) =

foreach i in 1 .. self.size
if self.keys[i] = symbol

return self.values[i]

if self.parent �=nil

return self.parent.lookup(symbol)

return nil

Fig. 9. Method vtable.lookup. The default implementation searches the receiver’s keys
for the message name. If no match is found the search continues in the parent, if present,
otherwise the search fails by answering nil.

shown in pseudo-code intended to make their operation as clear as possible.
(Appendix B presents a complete implementation of these methods and types
in GNU C.)

Before we can construct an object system we need a way to add methods to
vtables, which requires a means to construct unique method names. Figure 7
shows a simple algorithm for creating ‘interned’ (unique) strings that are ideal
for use as method names.

To add methods to a vtable we send addMethod to it, passing a message
name (symbol) and the address of native code implementing the method. The
algorithm is shown in Figure 8.
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function vtable allocate(self, size) =

let object = allocateMemory(PointerSize + size)

object := object + PointerSize

object[-1] := self /* vtable */
return object

Fig. 10. Method vtable.allocate. A new object is created and its vtable (stored in the
word preceding the object) is set to the vtable in which the allocate method was
invoked, making the object a member of that vtable’s family. The size argument
specifies the size of the object’s state. Computation of the correct value for size is
dependent on the programming language implementation in which the object model is
being used.

function vtable delegated(self) =

let child =

if self �=nil

vtable allocate(self[-1], VtableSize)

else
vtable allocate(nil, VtableSize)

child.parent := self
child.keys := EmptyList

child.value := EmptyList

return child

Fig. 11. Method vtable.delegated. A new vtable is allocated and its parent set to
the vtable in which the delegated method is being invoked. These parent fields link
the vtables together into a single delegation chain.

Sending a message to an object begins by mapping a particular combination
of object and message into an appropriate method implementation. Figure 9
shows the algorithm for vtable’s lookup method that performs this mapping.

Invoking the allocate method in a vtable allocates a new object. The object
is made a member of the vtable’s family, as shown in Figure 10.

Finally, the creation of new behaviours is provided by vtable’s delegated
method. It creates a new (empty) vtable whose parent is the vtable in which
delegated was invoked. The algorithm is shown in Figure 11.

3.2 Message Sending

To send a message M to an object O we look up M in the vtable of O to yield a
method implementation that is then called. The call passes the object O (which
becomes self in the called method) and any remaining message arguments. The
send algorithm is therefore:

function send(object, messageName, args...) =
let method = bind(object, messageName)
return method(object, args...)
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The function bind is responsible for looking up the method name in the vtable
of object and just invokes lookup in the object’s vtable, passing messageName
as the argument:

function bind(object, messageName) =
let vt = object[-1]
let method =
if messageName = lookup

and object = VtableVT
vtable lookup(vt, lookup)

else
send(vt, lookup, messageName)

return method

Note that the recursion implied by send calling bind which in turn calls send (to
invoke the lookup method in the object’s vtable) is broken by ‘short-circuiting’
the send (calling the method vtable lookup directly) when the method name
is lookup and the object in which it is being bound is the ‘vtable vtable’.

3.3 Bootstrapping the Object Universe

The structure associated with the three essential types has to be created and
their vtables populated before the object model will behave as we have described.
Figure 12 shows one possible order in which this initialisation can take place:

1. The vtables for vtable, object and symbol are created and initialised
explicitly.

2. The symbol lookup is interned and the method
vtable.lookup installed. At this point the send and bind functions de-
scribed in the previous section (i.e., message sending) will work.

3. The symbol addMethod is interned and the method
vtable.addMethod installed. At this point methods can be installed in a
vtable by sending addMethod to the vtable.

4. The symbol allocate is interned and the method
vtable.allocate installed. At this point new members of an object family
can be created by sending their vtable the message allocate, and this is
done to create the prototype symbol object.

5. The symbol intern is interned and the method
symbol.intern installed. At this point new symbols can be interned by
sending intern to the prototype symbol object.

6. Finally, the symbol delegated is interned (by sending intern to symbol)
and the method vtable.delegated installed (by sending addMethod to the
vtable for vtables). At this point the object system behaves exactly as de-
scribed in this paper.

The initialised ‘object universe’ is shown in Figure 13.
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function initialise() =

/* 1. create and initialise vtables */
VtableVT := vtable delegated(nil)

VtableVT[-1] := VtableVT

ObjectVT := vtable delegated(nil)

ObjectVT[-1] := VtableVT

VtableVT.parent := ObjectVT

SymbolVT := vtable delegated(ObjectVT)

/* 2. install vtable.lookup */
lookup := symbol intern(nil, ”lookup”)

vtable addMethod(VtableVT, lookup, vtable lookup)

/* 3. install vtable.addMethod */
addMethod := symbol intern(nil, ”addMethod”)

vtable addMethod(VtableVT, addMethod,

vtable addMethod)

/* 4. install vtable.allocate */
allocate := symbol intern(nil, ”allocate”)

VtableVT.addMethod(allocate, vtable allocate)

symbol := SymbolVT.allocate(SymbolSize)

/* 5. install symbol.intern */
intern := symbol intern(nil, ”intern”)

SymbolVT.addMethod(intern, symbol intern)

/* 6. install vtable.delegated */
delegated := symbol.intern(”delegated”)

VtableVT.addMethod(delegated, vtable delegated)

Fig. 12. Bootstrapping the object model. Method implementations are called as func-
tions and vtable slots initialised explicitly to create the vtables for the three objects
types. The methods symbol intern and vtable addMethod are called explicitly to pop-
ulate the vtables. By the time the last two lines are reached, we have enough of the
object model in place that we can send messages to intern the symbol delegated and
install it in the vtable for vtables.

3.4 Implementation Language Bindings

To deploy the object model as part of a programming language implementation,
we need three things:

– Implementation language structure definitions for the layouts of object,
symbol and vtable (implied by the default implementation of the lookup
method installed in the ‘vtable vtable’);

– Implementations of the five essential methods in the implementation lan-
guage; and

– An implementation language method invocation mechanism, to call a method
implementation (returned from lookup) passing the receiver object and mes-
sage arguments.
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parent string "lookup"

string "addMethod"

string "allocate"

string "delegated"

string "intern"

ObjectVT

keys
values

parent

SymbolVT

keys
values

symbol_intern()

parent

VtableVT

keys
values

vtable_lookup()
vtable_addMethod()
vtable_allocate()
vtable_delegate()

nilstring

parent ref
vtable ref
slot ref
list

method_impl()

Legend

nil

symbol

Fig. 13. The object model universe. The larger objects are the vtables for the three
essential types (object, symbol and vtable). Just above SymbolVT is the prototype
symbol object, and to the right of it are the symbols that provide message names for
the five essential methods whose implementations are just below VtableVT on the right.
The symbol intern is bound to the method string intern in the SymbolVT and the
remaining methods are bound to their message names in VtableVT. Both SymbolVT

and VtableVT delegate to ObjectVT.

Appendix B presents a complete implementation in the GNU C language. The
next section discusses two optimisations appearing in this implementation that
significantly improve the performance of message sending. It should be straight-
forward to adapt them to other programming languages.

3.5 Optimising Performance

The performance of the GNU C versions of send() and bind() are improved
by two forms of caching.

Figure 14 shows a version of send that is implemented as a macro. This allows
each send site to remember the previous destination method returned by bind
in an inline cache. As long as the vtable of the next receiver does not change,
the previous destination method can be invoked directly without calling bind
again (assuming the message name at the send site is constant).

Figure 15 shows a version of bind that has been optimised with a global
method cache. Before invoking lookup the optimised bind looks for the vtable
and method name in a cache of previously bound methods. If it finds a match,
it returns the cached closure; if not, it invokes lookup and fills the appropriate
cache line.

These two optimisations are independent and can be used separately or to-
gether. Note that a realistic language implementation would need a way to inval-
idate these caches each time a change is made to vtable contents or inheritance
relationships. Mechanisms for doing this are simple but beyond the scope of this
paper.
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#define send(OBJ, MSG, ARGS...) ({ \
struct object *o = (struct object *)(OBJ); \
struct vtable *thisVT = o-> vt[-1]; \

static struct vtable *prevVT = 0; \
static method t method = 0; \
(thisVT == prevVT \
? method \
: (prevVT = thisVT, \

method = bind(o, (MSG))))(o, ##ARGS); \
})

Fig. 14. Optimising send with an inline cache. The send macro memoizes the previous
vtable and associated closure returned from bind. bind is only called (and the memoized
closure and vtable values updated) if the invocation is to an object whose vtable is
not the same as the previous object’s vtable at the same invocation site; otherwise the
previously bound closure is reused immediately. This is safe provided the method name
is a constant at any given invocation site.

struct entry {
struct vtable *vtable;

struct object *message;

method t method;

} MethodCache[8192];

struct method t *bind(struct object *obj,

struct object *msg)

{
method t m;

struct vtable *vt = obj-> vt[-1];

unsigned long offset = hash(vt, msg) & 8191;

struct entry *line = MethodCache + offset;

if (line->vtable == vt && line->message == msg)

return line->method;

m = ((msg == s lookup) && (obj == vtable vt))

? vtable lookup(vt, msg)

: send(vt, s lookup, msg);

line->vtable = vt;

line->message = msg;

line->method = m;

return m;

}

Fig. 15. Optimising bind with a global method cache. The MethodCache stores vtables,
message names, and the associated method implementations. To bind a message name
within a vtable, a hash is computed from the vtable and name modulo the size of the
method cache to create a cache line offset. If the vtable and name stored in the cache
at that offset correspond to the vtable and name being bound, the stored method is
returned immediately. Otherwise lookup is invoked in the vtable to bind the method
name, and cache updated accordingly.
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4 Extensions That Improve Generality

Section 3 described the simplest possible arrangement of the object model, in
which each message name in a vtable is associated with the address of the native
code of a corresponding method implementation. We found that the usefulness
and generality of the object model were significantly improved by introducing
an additional level of indirection, so that a message name is associated with
a closure. Each closure contains two items: the address of the compiled code
implementing the method and some (arbitrary) data, as shown in Figure 16.

VtableVT

vtable

ClosureVT

method

data

native code

anything

selector

Fig. 16. Revised internals of vtables. A vtable maps message names onto closures,
containing the address of the native code to be executed and some arbitrary data. Since
closures are objects, they too have a pointer to a vtable describing their behaviour.

function vtable addMethod(myClosure, self,

aSymbol, aMethod) =

foreach i in 1 .. self.size
if self.keys[i] = aSymbol

self.values[i] := aMethod

return
self.keys.append(aSymbol)

self.values.append(new closure(aMethod, nil))

function send(object, messageName, args...) =

let closure = bind(object, messageName)

return closure.method(closure, object, args...)

function bind(object, messageName) =

let vt = object[-1]

let closure =

if messageName = lookup

and object = VtableVT

vtable lookup(nil, vt, lookup)

else
send(vt, lookup, messageName)

return closure

Fig. 17. Revised methods and functions. The method addMethod and the message
sending functions bind and send are modified to store and retrieve closures instead
of methods. Note that addMethod, like all method implementations, now accepts an
additional argument (the closure in which it was found by lookup).
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VtableVTvtable
pointer ClosureVT

method

data
getter(closure, self)
{
  ^closure.data
}

slotName

ClosureVT

method

data

slotName:

setter(closure, self, value)
{
  ^closure.data.data := value
}

FunctionVT

FunctionVT

Fig. 18. Self-like slots. An assignable slot is implemented as a pair of methods: a ‘getter’
and a ‘setter’. The value of the slot is stored as the data in the closure of its getter
method. The data of the setter method’s closure contains a reference to the getter’s
closure, allowing the setter to assign into the getter’s data. A single implementation of
getter and setter can be shared by all closures associated with assignable slots.

VtableVT
vtable ClosureVT

method

data

interp(closure, self)
{
  char *bytecodes = closure.data;
  ...
}

byte-compiled method 1

selector

ClosureVT

method

data

byte-compiled method 2selector

FunctionVT

Fig. 19. Mixed-mode execution. An interpreter (for bytecodes or other structures) can
be shared by any number of method closures. The structure to be interpreted is stored
in the data part of the closure. As described in the text, the closure is passed as an
argument to the method implementation (in this case the interpreter) from where its
data is readily accessible. To the caller there is no difference between invoking a native
method and invoking a byte-compiled method; the calling convention is the same.

The bind function is modified to return a closure as shown in Figure 17; send
then invokes the method stored in the closure and passes the closure itself as an
argument to the method (in addition to the message receiver and arguments).
Method implementations are modified correspondingly, to accept the additional
argument.
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We believe the slight increase in complexity is more than justified by the
generality that is gained. For example:

– Figure 18 shows how closures can be used as assignable slots, creating an end-
user object model similar to that of traditional prototype-based languages.

– Figure 19 shows how closures are used to support mixed-mode execution [10].
A single interpreter method is shared between many closures whose data
fields contain the code to be interpreted. To the caller there is no difference
between invoking a natively compiled method and invoking an interpreted
method.

Other useful extensions that have been implemented include support for
‘Lieberman-style’ prototypes [7] which provide much stronger encapsulation than
the more common class-based inheritance. A detailed description of this exten-
sion is available online [9].

5 Evaluation

We validate the object model in two ways:

– By showing that it can be extended easily to support object models for
existing languages or significant and useful features drawn from them. We
do this by extending the prototype-based language (that uses the object
model directly, as described in Section 2.2) first to support the Javascript
object model (Section 5.1) and then by adding Traits (Section 5.2).

– By showing that its performance is sufficient for its use in serious language
implementations (Section 5.3).

5.1 Ease of Use: Javascript Objects

Javascript [3] has a simple object model based on delegation [7] in which objects
are dictionaries that map property names to their values. When an object is asked
for an unknown property, it forwards the request to its prototype (fetched from
its proto property). Properties are ‘copy-on-write’; assigning to a property
of an object either updates an existing property or creates a new property in
the object. All objects, functions and methods in Javascript are based on this
model.

Figure 20 shows one way of extending the object model to support these
semantics. Note that this implementation is not intended to be used directly
by programmers (although nothing prohibits this). Rather, a compiler is ex-
pected to translate Javascript expressions into method invocations. For example,
a Javascript field access ‘x.p’ is translated to ‘x p’ (send message p to x, invoking
its property getter). Similarly, the Javascript assignment ‘x.p = y’ is translated
to ‘x set: #p to: y’ (send message set:to: to x, invoking its property setter)
with arguments #p (the property name) and y (the new value).
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vtable get [ ↑closure data ]

get := [ (vtable vtable lookup: #get) method ]

Object set: prop to: val

[

| closure |

(closure := self vtable lookup: prop) notNil

ifFalse:

[closure := self vtable methodAt: prop put: get].

closure setData: val.

prop == # proto

ifTrue:

[self vtable parent: val vtable.

vtable flush].

]

Fig. 20. Javascript objects. Properties are implemented in a manner similar to that
of slots in Figure 18. However, setter methods were eliminated in favour of a set:to:

method that treats the proto property specially. If proto is assigned then the
parent of the object’s vtable is set to the value’s vtable, and any method caches are
flushed. (Note that the block expression assigned to get is evaluated; the value assigned
is the result of executing the block, not an unevaluated, literal block. Appendix A
explains this syntax further.)

5.2 Ease of Use: Traits

Traits [11] are a powerful software composition mechanism. A trait is a collection
of methods without state that can be manipulated and combined with other
traits according to an algebra of composition, aliasing and exclusion. They are
interesting because they provide the power of multiple inheritance without the
complexity.

Figure 21 shows how the prototype-based language can be extended to support
Traits. We can then easily implement the operations of the Traits ‘algebra’, for
example:

Trait + aTrait

[

↑Trait delegated

useTrait: self;

useTrait: aTrait

]

This creates a new empty trait and adds both the receiver and the argument
to it, composing their behaviours. (Method exclusion and method aliasing are
left as an exercise; they take no more than a few minutes each. Once all three
operations are available, you will have conforming traits implementation!)
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Trait : Object ()

Object useTrait: aTrait [ aTrait addTo: self ]

Trait addTo: anObject [

self vtable keysAndValuesDo: [:selector :closure |

| newClosure |

newClosure := anObject vtable

traitMethodAt: selector

put: closure method.

newClosure setData: closure data]

]

vtable traitMethodAt: aSelector put: aMethod [

(self includesKey: aSelector)

ifTrue: [↑self errorConflict: aSelector]

↑self methodAt: aSelector put: aMethod

]

Fig. 21. Support for traits. Trait.addTo: adds the methods of the receiver to the
vtable of the argument. vtable.traitMethodAt:put: adds a method implementation
with a given name to the receiver, and signals an error if the method name is already
defined.

With the above traits implementation in place, we can write code such as:

T1 : Trait ()

T1 m [ ’this is m’ putln ]

T2 : Trait ()

T2 n [ ’this is n’ putln ]

C : Object () [ C useTrait: T1 + T2 ]

C o [ self m; n ]

(Note that in the above what looks like a literal block after the declaration
of C is actually an imperative; the program is executed from top to bottom,
sending useTrait: to C before continuing with the installation of method o in
C. Appendix A explains this further.)

5.3 Benchmarks

We measured the size and speed of a sample implementation written in GNU C
(see Appendix B), faithfully following the algorithms and structure presented in
this paper. All measurements were made on a 2.16 GHz Intel Core Duo.

The sample implementation is approximately 140 lines of code, containing:

– The three essential object types;
– One constructor function, for symbols;
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– The five essential methods;
– Macros for send and bind, as presented in Section 3.2, with optional inline

and global method caches; and
– An initialisation function that creates the initial objects and populates their

vtables to create the object system as shown in Figure 13.

The object code size for all essential objects and their methods, with unoptimised
send and bind, is 1,453 bytes. With the inline and global caches enabled, the
code size grows to 1,822 bytes.6 This should not be an issue for any but the most
severely resource-constrained environments.

Next we investigate the overhead of dynamic dispatch through the vtables.
We implemented the nfibs function (which has a very high ratio of message
sends, or function invocations, to computation) in optimised C with statically-
bound function calls and compared it with the object model using dynamically-
bound message sends and an inline cache. The results from running nfibs(34)
(performing 18,454,929 calls or method invocations) were:

type time % of static call
static call (C) 150 ms 100.0%
dynamic send 270 ms 55.6%

While the results are polluted a little by the arithmetic computation, they show
that a static C function call is only approximately twice as fast as a dynamically-
bound send through an inline cache. The actual overhead should be lower in
practice since most code will perform more computation per call/send than
nfibs.

Lastly, we implemented the example presented in Section 2 of this paper:
data structures suitable for a Lisp-like language. We implemented a ‘traditional’
length primitive using a switch on an integer tag to select the appropriate
implementation amongst a set of possible case labels. This was compared with
an implementation in which data was stored using the object model and the
length primitive used send to invoke a method in the objects themselves.7 Both
were run for one million iterations on forty objects, ten each of the four types
that support the length operation. The results, with varying degrees of object
model optimisations enabled, were:

implementation time % of switch
switch-based 503 ms 100.0%
dynamic object-based 722 ms 69.7%

+ global cache 557 ms 90.3%
+ inline cache 243 ms 207.0%

This shows that an extensible, object-based implementation can perform at bet-
ter than half the speed of a typical C implementation for a simple language
6 Darwin 8.8.1, Intel Core Duo, gcc-4.0.1 (Apple build 5367).
7 A reference implementation, including the length benchmarks, can be downloaded

from: http://piumarta.com/software/id-objmodel

http://piumarta.com/software/id-objmodel
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primitive. With a global method cache (constant overhead, no matter how many
method invocation sites exist) the performance is within 10% of optimised C.
When the inline cache was enabled the performance was better than twice that
of optimised C. In a practical language implementation the above performance
gaps would be decrease in all cases as the amount of useful work per primitive
increases. (It is hard to conceive of a simpler primitive than length.)

5.4 Limitations

The object model relies on a method cache [2] for performance. It is necessary
to flush the cache after certain programming changes such as modifying a vtable
(adding or removing a mapping, or storing into the parent slot). This is easy
to do for both inline and global method caches, but is neither described in this
paper nor counted in our evaluation of the sample implementation.

We do not count constructors in the number of methods in the object im-
plementation. (There is no requirement for the constructors to be installed as
methods although in practice it is convenient to do so.)

We also do not count the vtable pointer as part of the end-user object struc-
ture, since it appears before the nominal start of the object.

Lastly, the implementation of bind and send cannot be exposed as easily as
the method lookup mechanism. This can be addressed by exposing the semantics
of functions in the same way that the object model exposes the semantics of mes-
saging (see Section 7). This permits almost unlimited flexibility to implement
mechanisms such as multimethods.

6 Related Work

TinyObjects [6] also lets programmers remove limitations from the system in-
stead of ‘programming around’ them. It provides a Metaobject Protocol
(MOP) [5], at the end-user level of abstraction, that reflects on the implemen-
tation level and allows programmers to customise the object model to fit the
needs of their applications. We address the same problem by implementing the
object model and the equivalent of a very small MOP within a single level of
abstraction. This way the programmer can directly manipulate the objects and
methods that implement the semantics of their object model.

Smalltalk-80 [4] has methods (in classes Behaviour, Class and Metaclass) that
provide what is essentially an incomplete MOP. While these can be used by
programs (including the Smalltalk programming environment itself) to create
new subclasses and modify method dictionaries, they cannot be used to modify
the semantics of message sending itself nor the internal layout of objects.

McCarthy’s metacircular evaluator for LISP [8] demonstrated that it is possible
for a language to be implemented (described) in itself. Such implementations are
‘open’: they allow programmers both to write ‘user programs’ and also to modify
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or extend the semantics of the language. The circular implementation of the object
model brings an equivalent openness to the object-messaging paradigm.

Some systems, such as the Self programming language [12] and Lieberman’s
prototypes [7], present the user with simpler object models than the one we
describe. The cost of this simplicity is that some of the semantics of their object
models is hidden (slot lookup in particular) and cannot be modified by end user
code. Self also requires a significantly more complex runtime to run efficiently [1].
The model is much closer Self’s internal object model which uses maps (similar
to vtables) to describe the behaviour of entire clone families. Very promising
recent experiments with Self aim to expose the entire implementation to the
programmer [13].

7 Conclusions and Further Work

We presented a simple, extensible object model that exposes its own semantics
in terms of the objects and messages that it implements. This circularity in the
implementation results in surprising flexibility; end users have direct access to,
and control over, the implementation mechanisms of the object model itself. Our
experience with this object model has shown that it can be extended easily to
support powerful features such as sideways composition and mixed-mode execu-
tion. While it is not necessarily a friendly model for hand-written code, it is an
attractive target for automatic translation. It could also be an attractive target
for statically-typed languages, where the compiler can guarantee runtime type
safety.

Because it imposes no structure on end user objects, the model invites exper-
imentation that might otherwise be difficult. For example, it allows a pointer
to a compiled native function to also be an object, to which messages can be
sent; a vtable in the word before the function prologue suffices. We envisage
going further and storing useful information about compiled code (stack layout,
signature information, pre- and post-conditions, etc.) in the word before the
function’s vtable pointer (at offset -2).

This complements ongoing work with dynamic code generation that brings the
functional aspects of the object model (method implementations, method invo-
cation, and send and bind in particular) under the control of the programmer.
This work will be the subject of forthcoming publications.

Starting with the algorithms and C language bindings described in this pa-
per, implementing the object model in C took approximately three hours. The
essential objects and methods total 140 lines of source code. Not only is it tiny,
but it also scales well: in a slightly different form it has been in daily use by
several people for over a year. This model provides rich Smalltalk-like class li-
braries, implements its own compiler and dynamic code generator for multiple
architectures, and integrates seamlessly with platform libraries and garbage col-
lection. With the addition of a few lines of code it can support tagged immediate
quantities, and represent the object nil with the NULL pointer.
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A Prototype Language Syntax

The prototype-based language used for several examples in the text has a syntax
similar to that of Smalltalk-80 [4] with a few significant differences described here.

A.1 Type Declarations

New types are introduced by creating a named prototype of that type. For
example,

Derived : Base ( a b )

creates a variable ‘Derived’ (in a kind of ‘global namespace’) and assigns to it a
new prototype belonging to a family of objects that inherit behaviour and state
from the family of ‘Base’ (another prototype) and which extend that state with
two new slots called a and b. The new vtable for Derived is created automatically
by sending delegated to the vtable for Base; this vtable is then sent the message
allocate to create the prototype stored in Derived.

A.2 Method Definitions

The body of a method follows its defining message pattern within square brack-
ets. For example,

Derived frobble: bob with: bill

[

↑bob frobbleWith: bill from: self

]

installs the method frobble:with: in the vtable for Derived by sending it
the message addMethod with the message name and method implementation as
arguments.

A.3 Top-Level Statements

Arbitrary statements can be executed at the ‘top-level’ of the program (anywhere
a definition is allowed) by enclosing them in square brackets. For example,

[

’running DeepThought program...’ putln.

DeepThought new multiply: 6 by: 9.

]

announces to the user that an application is about to run, then instantiates and
runs it.

A.4 Top-Level Definitions

Variables in the ‘global namespace’ can be bound to arbitrary values (not just
to new prototypes as described above). For example,

TheAnswer := [ 42 ]

creates a ‘global’ variable named TheAnswer and initialises it with the value of
the last expression in the block (in this case, the literal 42).
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B Sample Object Model Implementation

/* A sample implementation in GNU C of the object model described

* in this paper. This code, and that of the benchmarks discussed

* in the text, can be downloaded from:

* http://piumarta.com/software/id-objmodel

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define ICACHE 1 /* nonzero to enable point-of-send inline cache */

#define MCACHE 1 /* nonzero to enable global method cache */

struct vtable;

struct object;

struct symbol;

typedef struct object *oop;

typedef oop *(*method_t)(oop receiver, ...);

struct vtable

{

struct vtable *_vt[0];

int size;

int tally;

oop *keys;

oop *values;

struct vtable *parent;

};

struct object {

struct vtable *_vt[0];

};

struct symbol

{

struct vtable *_vt[0];

char *string;

};

struct vtable *vtable_vt = 0;

struct vtable *object_vt = 0;

struct vtable *symbol_vt = 0;

oop s_addMethod = 0;

oop s_allocate = 0;
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oop s_delegated = 0;

oop s_lookup = 0;

oop s_intern = 0;

oop symbol = 0;

struct vtable *SymbolList = 0;

extern inline void *alloc(size_t size)

{

RR struct vtable **ppvt=

(struct vtable **)calloc(1, sizeof(struct vtable *) + size);

return (void *)(ppvt + 1);

}

oop symbol_new(char *string)

{

struct symbol *symbol = (struct symbol *)alloc(sizeof(struct symbol));

symbol->_vt[-1] = symbol_vt;

symbol->string = strdup(string);

return (oop)symbol;

}

oop vtable_lookup(struct vtable *self, oop key);

#if MCACHE

struct entry {

struct vtable *vtable;

struct object *selector;

method_t method;

} MethodCache[8192];

#endif

#if ICACHE

# define send(RCV, MSG, ARGS...) ({ \

oop r = (struct object *)(RCV); \

struct vtable *thisVT = r->_vt[-1]; \

static struct vtable *prevVT = 0; \

static method_t method = 0; \

(thisVT == prevVT \

? method \

: (prevVT = thisVT, \

method = _bind(r, (MSG))))(r, ##ARGS); \

})

#else /* !ICACHE */

# define send(RCV, MSG, ARGS...) ({ \

oop r = (oop)(RCV); \
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method_t method = _bind(r, (MSG)); \

method(r, ##ARGS); \

})

#endif

method_t _bind(oop rcv, oop msg)

{

method_t method;

struct vtable *vt = rcv->_vt[-1];

#if MCACHE

unsigned int hash =

(((unsigned)vt << 2) ^ ((unsigned)msg >> 3))

& ((sizeof(MethodCache) / sizeof(struct entry)) - 1);

struct entry *line = MethodCache + hash;

if (line->vtable == vt && line->selector == msg)

return line->method;

#endif

method = ((msg == s_lookup) && (rcv == (oop)vtable_vt))

? (method_t)vtable_lookup(vt, msg)

: (method_t)send(vt, s_lookup, msg);

#if MCACHE

line->vtable = vt;

line->selector = msg;

line->method = method;

#endif

return method;

}

oop vtable_allocate(struct vtable *self, int payloadSize)

{

struct object *object = (oop)alloc(payloadSize);

object->_vt[-1] = self;

return object;

}

struct vtable *vtable_delegated(struct vtable *self)

{

struct vtable *child =

(struct vtable *)vtable_allocate(self, sizeof(struct vtable));

child->_vt[-1] = self ? self->_vt[-1] : 0;

child->size = 2;

child->tally = 0;

child->keys = (oop *)calloc(child->size, sizeof(oop));

child->values = (oop *)calloc(child->size, sizeof(oop));

child->parent = self;

return child;

}
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oop vtable_addMethod(struct vtable *self, oop key, oop method)

{

int i;

for (i = 0; i < self->tally; ++i)

if (key == self->keys[i])

return self->values[i] = (oop)method;

if (self->tally == self->size)

{

int sz= (self->size *= 2);

self->keys = (oop *)realloc(self->keys, sizeof(oop) * sz);

self->values = (oop *)realloc(self->values, sizeof(oop) * sz);

}

self->keys [self->tally ] = key;

self->values[self->tally++] = method;

return method;

}

oop vtable_lookup(struct vtable *self, oop key)

{

int i;

for (i = 0; i < self->tally; ++i)

if (key == self->keys[i])

return self->values[i];

if (self->parent)

return send(self->parent, s_lookup, key);

fprintf(stderr, "lookup failed %p %s\n",

self, ((struct symbol *)key)->string);

return 0;

}

oop symbol_intern(oop self, char *string)

{

oop symbol;

int i;

for (i = 0; i < SymbolList->tally; ++i)

{

symbol = SymbolList->keys[i];

if (!strcmp(string, ((struct symbol *)symbol)->string))

return symbol;

}

symbol = symbol_new(string);

vtable_addMethod(SymbolList, symbol, 0);

return symbol;

}

void init(void)

{

vtable_vt = vtable_delegated(0);

vtable_vt->_vt[-1] = vtable_vt;
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object_vt = vtable_delegated(0);

object_vt->_vt[-1] = vtable_vt;

vtable_vt->parent = object_vt;

symbol_vt = vtable_delegated(object_vt);

SymbolList = vtable_delegated(0);

s_lookup = symbol_intern(0, "lookup");

vtable_addMethod(vtable_vt, s_lookup, (oop)vtable_lookup);

s_addMethod = symbol_intern(0, "addMethod");

vtable_addMethod(vtable_vt, s_addMethod, (oop)vtable_addMethod);

s_allocate = symbol_intern(0, "allocate");

send(vtable_vt, s_addMethod, s_allocate, vtable_allocate);

symbol = send(symbol_vt, s_allocate, sizeof(struct symbol));

s_intern = symbol_intern(0, "intern");

send(symbol_vt, s_addMethod, s_intern, symbol_intern);

s_delegated = send(symbol, s_intern, (oop)"delegated");

send(vtable_vt, s_addMethod, s_delegated, vtable_delegated);

}
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of course, mainly focusing on static content and markup languages and ignoring
several decades of experience with lean computing kernels built around Lisp,
Smalltalk, and other dynamic languages. That is history, but it need not hold us
back. In this paper we describe a simple and general kernel for programming the
Web. Its core is less than 10,000 lines of code (with comments), it runs in major
browsers with no installation, and it performs well. We call it the Lively Kernel.

In this paper, we begin by the observation that, completely apart form the
text-based world of HTML and its decorations, the now ubiquitous Internet
browsers provide all that is needed for a rebirth of active objects in the Web
context. Beginning with the JavaScript language and standard browser graph-
ics, we trace the construction of a computing environment from basic shapes to
widgets (active user interface components) to programming tools, ending with
an environment is self-supporting and that supports general application devel-
opment and deployment on the Internet.

Look at a typical Web page on a typical computer and you will see static
graphics, most likely generated from a decades-old markup language, being pre-
sented by a computer capable of executing a billion instructions per second.
There is something wrong with that picture. There is no reason that the entire
page cannot be an active object, ready to respond in all the general ways that
computers were built to support. This is the Lively Kernel view of the Web
and Web programming. Ironically it is not even a new approach, but rather the
tried and true approach of numerous dynamic programming environments that
were in widespread use long before HTML was adopted as the standard of Web
content presentation.

We observe that every browser supports a dynamic programming language,
one or more graphics systems, and support for network communication. While
JavaScript has been mainly shaped by its role as a scripting vehicle for HTML,
it is actually a perfectly usable dynamic programming language. In the area of
graphics, most browsers support HTML, a flat graphics model (Canvas) and a re-
tained graphics model (SVG; see http://www.w3.org/TR/SVG11/). For commu-
nication, modern browsers offer XmlHttpRequest for access to remote hosts else-
where on the Internet. To a self-supporting system builder, this is all one needs.

We inherit from the World Wide Web an architecture built around a text
markup language. The Lively Kernel sets that architecture aside in favor of
modern graphics and a dynamic programming language. We begin by turning
the conventional Web programming ”stack” upside down as shown in figure 1.

The first priority of this architecture is to provide a world of active objects.
This is accomplished by putting a dynamic language close to the operating sys-
tem, which allows both the infrastructure (widgets, etc.) and the application to
share the same pervasive generality and power. The compactness and capability
of our system validates this approach.

We began with a few simple experiments with shapes on a Web page made ac-
tive in small ways by attached JavaScript methods. Encouraged by the respon-
siveness of both JavaScript and our graphics layer, we set about implementing a
more complete framework for active graphical objects on a Web page. We chose

http://www.w3.org/TR/SVG11/
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Fig. 1. Turning Web programming upside down

to follow the Morphic architecture, which we knew from both the Self and Squeak
programming environments, and which we consider to be a model of simplicity
and generality.

2 A Quick Summary of the Morphic Architecture

The Morphic architecture is very simple. It defines a class of graphical objects,
or “morphs”, each of which has some or all of the following properties:

• A shape, or graphical appearance
• A set of submorphs, used to construct the “scene graph” of the page or world
• A coordinate transformation that affects its shape and any submorphs
• An event handler for mouse and keyboard events
• An editor for changing its shape
• A layout manager for laying out its submorphs
• A stepping protocol for time-varying behavior
• A damage region and repainting protocol and double-buffered display mech-

anism when this is not available in the underlying graphics

A few other high-level morphs serve to complete a meaningful graphical envi-
ronment. WorldMorph captures the notion of an entire screen view (often a Web
page); its shape defines its background appearance, and its submorphs comprise
the remaining content of the page. A world has a scheduler for managing user
input, external input, and timer-based events. A HandMorph is the Morphic
manifestation of a cursor; it can be used to pick up, move, and deposit other
morphs. Its shape may change to indicate different cursor states, and it is the
source of user events.

A property, that can be enabled or not, causes dropping of one morph upon
another to make the first a submorph of the second. Mashups and new widgets
or complete user interfaces can be assembled in this concrete manner.

In the Lively Kernel, a Morphic world may have several hands active at the
same time, corresponding to multiple collaborating users of that world, and
multiple worlds may be linked in the manner of linked Web pages.
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Interested readers are referred to the original papers on Morphic [12], and to
the Lively Kernel technical documentation.

3 A Lively Construction

In contrast with the static elements of most Web pages, each element of a Lively
Web page is a Morphic object able to be picked up, moved, duplicated and
reshaped. Thus, at its simplest, the Lively Kernel functions as a rudimentary
graphics editor. The sequence shown in figure 2 illustrates the construction of
a simple truck shape by concrete manipulation. In figure 2a we see a palette
of useful shapes. In figure 2b, the rectangle has been copied, and extended in
figure 2c. In figure 2d, the rectangle has been colored yellow, an ellipse has been
copied, resized, and colored, and has been given a thick black border to resemble
a tire, and a second copy has already been affixed to the bus. In figure 2e, the
truck is complete, and figure 2f shows a family of trucks, copied and rotated from
the new master, all operations that can be accomplished with simple gestures
in the Lively Kernel’s graphic editor. The next section will show how similar
structures are built programmatically.

Beyond the basic vocabulary of the underlying graphics support, the pro-
grammability of Morphic shapes provides an unlimited range of graphical idioms.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Drag-and-drop construction of simple objects in the Lively Kernel
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(a) (b)

Fig. 3. Extending the graphical vocabulary

Figure 3 shows a small snippet of JavaScript that draws a polygonal spiral. Be-
yond mere marks on the screen, this code produces a fully active object that can
be copied, scaled, and colored, as shown, and that could be set to spinning with
one more line of code, such as

this.startStepping(50, \rotateBy", 0.1); //0.1 radians every 50 ms

4 A Lively Clock

Here we present a simple application written in the Lively Kernel. The pur-
pose is to illustrate the style of code written, and the advantages derived from
the underlying architecture. Most of the code is in the “makeNewFace” method
which centers the hour labels at equally spaced points around the face, and cre-
ates the three hands. Once the clock is created, the remaining task is to make
the hands move. This is accomplished in the “setHands” method. Note that
no code is required to update the image. It suffices to set the rotation of the
hands appropriately; the architecture takes care of any required redrawing. The
“setHands” method is scheduled to be called every 1000 milliseconds by the
“startSteppingScripts” method, which is invoked whenever a new morph is
placed into the world.

// ================================

// A Lively Kernel clock

// ================================

ClockMorph = Class.create(Morph, {

defaultBorderWidth: 2,

type: "ClockMorph",

initialize: function(�super, position, radius) {

�super(position.asRectangle().expandBy(radius), "ellipse");

this.openForDragAndDrop = false;

this.linkToStyles([’clock’]);

this.makeNewFace();

return this;

},
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makeNewFace: function() {

var bnds = this.shape.bounds();

var radius = bnds.width/2;

var fontSize = Math.max(

Math.floor(0.04 * (bnds.width + bnds.height)),2);

var labelSize = fontSize; // room to center with default inset

for (var i = 0; i < 12; i++) { // Place the 12 labels...

var labelPosition = bnds.center().addPt(

Point.polar(radius*0.85,((i-3)/12)*Math.PI*2)).addXY(labelSize,0);

var label = new TextMorph(pt(0,0).extent(pt(labelSize*3,labelSize)),

// (i>0 ? i : 12) + ""); // English numerals

// Roman:

[’XII’,’I’,’II’,’III’,’IV’,’V’,’VI’,’VII’,’VIII’,’IX’,’X’,’XI’][i]);

label.setWrapStyle(WrapStyle.SHRINK);

label.setFontSize(fontSize); label.setInset(pt(0,0));

label.setBorderWidth(0); label.setFill(null);

label.align(label.bounds().center(),labelPosition.addXY(-1,1));

this.addMorph(label);

}

this.addMorph(this.hourHand =

Morph.makeLine([pt(0,0),pt(0,-radius*0.5)],4,Color.blue));

this.addMorph(this.minuteHand =

Morph.makeLine([pt(0,0),pt(0,-radius*0.7)],3,Color.blue));

this.addMorph(this.secondHand =

Morph.makeLine([pt(0,0),pt(0,-radius*0.75)],2,Color.red));

this.setHands();

this.changed();

},

setHands: function() { // Set hand angles from time

var now = new Date();

var second = now.getSeconds();

var minute = now.getMinutes() + second/60;

var hour = now.getHours() + minute/60;

this.hourHand.setRotation(hour/12*2*Math.PI);

this.minuteHand.setRotation(minute/60*2*Math.PI);

this.secondHand.setRotation(second/60*2*Math.PI);

},

startSteppingScripts: function() { // Called when placed in a world

this.startStepping(1000, "setHands"); // once per second

}

});

Listing 1.1. A Morphic Clock in the Lively Kernel
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(a) (b) (c)

Fig. 4. Composition of dynamic objects in the Lively Kernel

We have already pointed out the architectural advantage provided in redraw-
ing of the hands and periodic execution of the scheduled behavior. In addition,
the entire construct inherits the ability to be scaled and rotated arbitrarily.

Figures 4a to 4c illustrate the flexibility of the Lively application architecture.
In figure 4a we see a clock next to a (spinning) star. In figure 4b, the clock has
been expanded to a large size (note that the text looks better, not worse), making
it possible to drop the spinning star onto the end of the second hand. In figure 4c,
we see the clock shrunk back to its normal size, but still sporting a spinning star
on the end of its second hand. Of course, it is always possible to disable this
kind of fanciful manipulation, but at this point we are exploring flexibility, not
trying to prevent it.

The clock is a graphical assembly of text, lines and an ellipse, together with a
simple script that endows the assembly with real clock-ness. In an equally simple
manner, a basic set of “widgets” (common active user interface components)
can be built up from the basic shapes plus a few simple methods. If the earlier
truck example illustrated the construction of new molecules, then this is a bit
like chemistry since, besides the mere assembly of parts, there is a meaningful
model under each widget, and the interaction of those underlying values is the
beginning of open-ended computing and self-support.

5 Lively Development Tools

Within the Morphic context, we chose to implement the Lively Kernel’s widget
set with a model/view separation along the lines of many Smalltalk systems.
This choice was influenced by experience with GUI-builder applications and
the Fabrik visual programming system. Besides allowing for multiple views of
a given model, the model/view separation makes it easier to infer appropriate
model structure from a given concrete assembly of UI components. It also turns
out to provide a flexibility that is vital for migration of functionality between
client and server where this is desired.

Figure 5 shows a number of simple widgets arranged in a test panel. It is
not much to look at as a picture, but if one runs the Lively Kernel from our
site, one finds that the buttons, text boxes and lists are in groups that exhibit
bidirectional coupling through their shared models. For instance the slider is
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Fig. 5. A text panel for widgets with shared models

Fig. 6. A Code Browser viewing the Clock application
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hooked to a numerical model that is bidirectionally connected to one of the text
views with a read/print converter.

We made the claim above that even a rudimentary assembly of widgets is the
makings of open-ended computing. This should not surprise any of our readers,
and we see in Figure 6 a piece of almost professional-looking software which is
little more than an assembly of text boxes, lists, a clipping component, and the
same slider shown in Figure 5, now doing service in (almost) vertical orientation
as a scroll bar.

If we look more closely at the list on the left – “ButtonMorph”, “ClipMorph” –
these are names of classes in the system itself, as are the selections, “ClockMorph”,
and “setHands”. It is in fact a code browser (as its title bar confirms) written
in the system, and viewing code in the system; in fact the very code exhibited
earlier for the clock.

Owing to the uniform graphics architecture, the browser application too can
be used at any scale or rotation. If you are running the Lively Kernel, you
may find this browser in the “Development Tools” world. Browse to this same
method, add a minus sign to the parameter of the last setRotation call, and you
will have a clock whose second hand runs backwards.

The code browser shown above is scarcely larger than than the ClockMorph
class it is editing. We exhibit it here, if only to show that, having built up a
rudimentary set of widgets, self-support with a graphical user interface is not so
difficult to achieve.

// ================================

// A Lively Kernel code browser

// ================================

Widget.subclass(’SimpleBrowser’, {

defaultViewTitle: "Javascript Code Browser",

pins: ["+ClassList", "-ClassName", "+MethodList",

"-MethodName", "MethodString"],

initialize: function(�super) {

var model = new SyntheticModel(this.pins);

var plug = model.makePlugSpecFromPins(this.pins);

�super(plug);

this.scopeSearchPath = [Global];

model.setClassList(this.listClasses());

},

updateView: function(aspect, source) {

var p = this.modelPlug;

if (!p) return;

switch (aspect) {

case p.getClassName:

var className = this.getModelValue(’getClassName’);

this.setModelValue("setMethodList",this.listMethodsFor(className));

break;

case p.getMethodName:
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var methodName = this.getModelValue("getMethodName");

var className = this.getModelValue("getClassName");

this.setModelValue("setMethodString",

this.getMethodStringFor(className, methodName));

break;

case p.getMethodString:

this.getModelValue("getMethodString"));

break;

}

},

listClasses: function() {

var list = [];

for (var i = 0; i < this.scopeSearchPath.length; i++) {

var p = this.scopeSearchPath[i];

var scopeCls = [];

Class.withAllClassNames(p, function(name) {scopeCls.push(name);});

list = list.concat(scopeCls.sort());

}

return list;

},

listMethodsFor: function(className) {

if (className == null) return [];

var sorted = (className == ’Global’)

? Global.constructor.functionNames().without(className).sort()

: Global[className].localFunctionNames().sort();

var defStr = "*definition";

var defRef = SourceControl &&

SourceControl.getSourceInClassForMethod(className, defStr);

return defRef ? [defStr].concat(sorted) : sorted;

},

getMethodStringFor: function(className, methodName) {

if (!className || !methodName) return "no code";

else return Function.methodString(className, methodName);

},

setMethodString: function(newDef) { eval(newDef); },

buildView: function(extent) {

var panel = PanelMorph.makePanedPanel(extent, [

[’leftPane’, newTextListPane, new Rectangle(0, 0, 0.5, 0.5)],

[’rightPane’, newTextListPane, new Rectangle(0.5, 0, 0.5, 0.5)],

[’bottomPane’, newTextPane, new Rectangle(0, 0.5, 1, 0.5)]

]);

var model = this.getModel();

panel.leftPane.connectModel( {model: model, getList: "getClassList",

setSelection: "setClassName"});

panel.leftPane.updateView("getClassList");
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panel.rightPane.connectModel({model: model, getList: "getMethodList",

setSelection: "setMethodName"});

panel.bottomPane.connectModel({model: model,

getText: "getMethodString", setText: "setMethodString"});

return panel;

}

});

Listing 1.2. A simple code browser

Most of the browser code should be fairly self-explanatory. We point out that
the reference to SourceControl allows this same browser to function stand-alone,
reflecting on the sources of the running system (JavaScript functions will print
themselves in response to toString()) or, in a team programming environment,
it will access the original source code files in a repository. The connectModel()

protocol in the buildView method provides for “pluggable” views so that, for
example, the two list panes are connected to different aspects of the underlying
model.

6 More Tools for Self-support

While a source code browser is the hallmark of self-support in any system, a
number of other reflective tools are useful in the maintenance and evolution of
a software system. The Lively Kernel provides a number of these, including, an
Object Inspector, a Stack Viewer, and a Profiler. Examples of these tools appear
in figure 7.

The Profiler and Stack Viewer are perhaps the most interesting of our reflec-
tive tools, because the normal JavaScript environment is missing the necessary
reflection to provide them. However, the resourceful software engineer will find
just enough reflection to provide these tools.

Consider the problem of execution time analysis: we wish to know exactly how
many times each method is invoked in the course of some computation, either
for rigor, or to understand where most of the time is spent. In the latter case, we
would ideally like to see an accounting of the real time spent in each method as
well. JavaScript engines provide neither of these reports, but they do, at least,
give us a millisecond clock.

Listing 1.3 shows how the millisecond time can be used to provide a relatively
complete profiler in a dynamic language environment. The essence of this func-
tion is simply an enumeration of all the methods in a class. If invoked with the
parameter “start”, then it replaces every method with an anonymous wrapping
function (tallyFunc) that, after some bookkeeping, calls the original method,
and if called with “stop”, it undoes this replacement. The bookkeeping, in this
case, involves incrementing a tally count by one, and a ticks count by the num-
ber of millisecond ticks between call and return of the method. The remaining
parameters for the outer call use the same enumeration to reset the tallies, or
to collect them for reporting, as in figure 7. The button above the profile is a
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Fig. 7. An Object Inspector, Stack Viewer, and Profiler

very simple control: each time it is pressed, it reads out the tallies and the tick
timings, displays its report, and then resets all the tallies.

// ================================

// The Lively Kernel Profiler

// ================================

Object.profiler = function (object, service) {

// Invoke as, eg, Object.profiler(Color.prototype, "start")

var stats = {};

var fnames = object.constructor.functionNames();

for (var i = 0; i < fnames.length; i++) {

var fname = fnames[i];

if (fname == "constructor") {} // leave the constructor alone

else if (service == "stop") // restore original functions

object[fname] = object[fname].originalFunction;

else if (service == "tallies")

stats[fname] = object[fname].tally; // collect the tallies

else if (service == "ticks")

stats[fname] = object[fname].ticks; // collect the real-time ticks

else if (service == "reset") {

object[fname].tally = 0; object[fname].ticks = 0; // reset the stats

} else if (service == "start") {

// Replace original functions by tallyFunc wrapper
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var tallyFunc = function () {

var tallyFunc = arguments.callee;

tallyFunc.tally++;

msTime = new Date().getTime();

var result = tallyFunc.originalFunction.apply(this, arguments);

tallyFunc.ticks += (new Date().getTime() - msTime);

return result;

}

// Attach tallies, and the original function,

// then replace the original

if (object[fname].tally == null)

tallyFunc.originalFunction = object[fname];

else

tallyFunc = object[fname]; // Repeated "start" will work as "reset"

tallyFunc.tally = 0;

tallyFunc.ticks = 0;

object[fname] = tallyFunc;

}

}

return stats;

};

Listing 1.3. The Lively Kernel Profiler

The Profiler shows the degree to which a dynamic language environment can
amplify even the simplest reflective capability. In this case the millisecond clock,
and ability to wrap and replace methods yields a relatively powerful profiling
tool in only half a page of code.

It is lamentable that the JavaScript standard provides almost no access to the
runtime execution state, such as call stack, temporary variable values, and the
ability to resume a suspended computation, but we can at least make the most
of what is there. JavaScript does provide a pseudovariable “arguments” whose
value is an array alias of the arguments passed on call. It also tacks a “callee”
property onto that array that allows access to the function that is running. Is
this enough for reasonable debugging? In some JavaScripts it is almost enough to
provide a stack trace because a non-standard feature in some JavaScripts allows
a function object to return its “caller”, but this is not a proxy to the activation
record, and thus is useless in the presence of recursion.

Wrap-and-replace to the rescue! In the Lively Kernel we support a debugging
mode of execution that wraps every method in the system with a function which
appends a reference to the arguments array, as well as to the receiving object
(“this”) to a shadow stack that is created afresh each time through the Morphic
event loop. This allows us to provide not only a stack trace, but also the ability to
inspect the receiver and arguments at every level of the call chain, either at will
or when an exception is encountered. It is worth noting that this management of
our own stack allows us access to these values after an exception has been thrown,
whereas our experience is that most JavaScript engines discard this state before
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giving control to the exception handling code. It can be viewed as a tribute to the
power of today’s computers that this level of simulation does not bring the Lively
Kernel to a complete halt. In fact we hardly notice the impact on performance.

7 Team Programming

One last tool is worthy of mention, given the context of this paper. The Lively
Kernel includes a rudimentary file parser which provides a bridge between the
source code file style of most Java and JavaScript developers, and the per-method
management of source code such as we know from Squeak and similar systems.
When viewing the system source files, each method has an associated source-
CodeDescriptor that delimits its location in the file. We keep a careful reckoning
of changes for each file so that descriptors from earlier versions of a given file can
still be used to make changes in later versions (we re-read the segment as a check
before committing any change). This enables our source code browser to browse
both the running code in the system and the shared sources in a repository. The
source code file approach is useful for team programming, given the existence of
external tools such as CVS, Subversion, and the like.

We talk here of files, but the Lively Kernel, being Web-borne software, makes
no reference to disk files on the user’s machine. Instead we use a basic WebDAV
protocol (see http://tools.ietf.org/html/rfc2518) that allows Web sites to
be treated as read/write file systems. Of course a user may run a local file server
on his laptop in order to work away from the Internet, but this style of access
to resources ensures that the Lively Kernel can be used anywhere on the Web.

These source code objects are useful in a number of different ways. For in-
stance, one can type a search string in the Lively Kernel, and get an instant
list of all occurrences in the source database that match the string. Such search
results are presented as a change list viewer, and the methods so viewed can be
edited there in place. It is a gratifying result of the Lively Kernel’s compactness
that these searches scan our entire code base and display their results in just
one second.

Associated with each world in the Lively Kernel is a list of changes that have
been made to the system. These can be viewed as a change list, which is handy
both for viewing prior versions, and for ready access to just the work in progress.
Most importantly, this log of changes is retained within the running system. If
the user saves any world as a new Web page, the associated list of changes
for that world will also be saved. At a later time, on a different machine, in
another browser, that page can be reloaded, the change list replayed, and the
work continued in a seamless manner. In this way, the Lively Kernel enables a
Smalltalk-image style of evolutionary development.

8 Application Development for the Web

Is a system capable of self-support necessarily a good foundation for the devel-
opment of general-purpose applications? We believe so. We have experimented

http://tools.ietf.org/html/rfc2518
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with simple media, interactive games, RSS feeds, chats, and mashups and, in
every case, the architectural substrate of the Lively Kernel has shown itself to
be effective. Some early experience is recorded in our Sun Tech Report [1].

Figure 8 shows a Lively Web page that is a mashup of a number of applica-
tions, all active and all manipulable. The clock and browser will be familiar from
earlier in this paper. The other applications include an asteroid-blasting game,
a Web weather viewer, a Web stock report, a demonstration 3-D viewer, and a
simulation of a seven-cylinder radial engine (running). Also visible are a couple
of links to other worlds with more applications including an RSS feed reader, a
GoogleMaps viewer, and a personal information manager.

When the Lively Kernel stores a simple object, an application, or an entire
world, it does so on a Web page. If one looks at one of these pages, one sees a
link to import the core of the Lively Kernel, followed by markup describing the
objects that have been stored. The link to the Lively Kernel both declares this
to be a page of lively content, and provides the interpretive engine for bringing
the stored objects to life.

Of course, similar things have been done on the Web for years, using plugins
and applets to provide the engines of active content. The twist in the Lively
Kernel is to use JavaScript for all the machinery of activity, thus avoiding the
need to install a plugin. Other libraries, such as Dojo or Scriptaculous, can
operate without installation, but the Lively Kernel goes several steps further.
First, since its graphical library is built from the ground up in JavaScript, it sets
the stage for a world without HTML and the epicycles that revolve around it.

Fig. 8. The Lively Kernel running numerous applications in an overlapping window
framework. This is a Web page.
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Fig. 9. Modes of storing and retrieving Lively Kernel objects

Second, it brings with it a world model in which everything is active and reflec-
tive from the beginning, a world of concrete manipulation that is immediately
empowering to developers and users alike.

Figure 9 illustrates the simple modes of storing and retrieving Lively objects
on a Web page.

9 A Benchmark Kernel

Beyond its immediate utility, the simplicity and completeness of the Lively Ker-
nel make it a meaningful benchmark of system complexity. It provides a widget
set and tools to construct an application from those widgets. It provides screen
management and process management facilities, along with a modest IDE. In
short, it provides all the tools needed for application development and deploy-
ment, as well as for evolution of the system itself.

We consider this accumulated functionality to be a meaningful unit of com-
parison. How many lines of code does it take to produce such a kernel? How is
the performance, and by what is it most limited? These and other questions can
be asked, and answered concretely with an artifact like the Lively Kernel as a
benchmark.

The reader may be interested to know our experience so far in this regard.
Figure 10 presents a breakdown of the Lively Kernel by functional category in
terms of lines of code.

The figures above include comments and lines with single bracket characters.
Prototype.js is an open source set of useful JavaScript extensions, of which we use
only a small number (see http://www.prototypejs.org/), and JSON is a nice
encoding for JavaScript objects by Doug Crockford (see http://www.JSON.org/).

It is surprising to some that text should be the largest module in a kernel
such as ours. In our experience, it is often the handling of text that makes the
difference between a toy and a serious tool. The Lively Kernel text is built from
the ground up, so it can run where no native text support is available. The
tally includes all the functions for mouse tracking, line composition, selection,
rich text encoding, font changes, and on-the-fly layout. It seemed to us the only
approach consistent with a world of active objects.

Clearly this system goes beyond the minimum functionality required for self-
support. Windows, nested worlds, rich text, arbitrary scaling and rotation are

http://www.prototypejs.org/
http://www.JSON.org/
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Fig. 10. Breakdown of Lively Kernel by function with approximate code size

all in some sense frills. Our intention in carrying the work this far was to make it
more likely that people might pick up the work and do surprising things without
needing to build a lot more infrastructure.

As with other benchmarks, we see the Lively Kernel as a starting point The
challenge is to build an even simpler graphical model, an even more general
processing model, a smaller complete kernel, and so on. The standard to be met,
in every case, is a kernel capable of building itself, and altering and saving itself
again as a Web page.

10 Related Work

It will be obvious to most readers that the Lively Kernel inherits much genetic
material from the Squeak Smalltalk system and the Smalltalks that preceded it
as well. Also the Morphic architecture, while most directly inherited from the
(class-based) Squeak version, began as part of the Self project at Sun.

We know of no other self-supporting JavaScript development system, let alone
one that runs directly off a web page without installation. However numerous
web sites use the underlying JavaScript engine to provide an execution facility
for JavaScript snippets, usually as part of a tutorial environment. An especially
nice one is Takashi Yamamiya’s live JavaScript Wiki (http://metatoys.org/
propella/js/workspace.cgi/Home). Interesting examples of other JavaScript-
hosted execution environments include “LogoWiki” by Colin Putney, Avi Bryant

http://metatoys.org/propella/js/workspace.cgi/Home
http://metatoys.org/propella/js/workspace.cgi/Home
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and Alan Kay, and an OMeta-based Smalltalk page (http://www.cs.ucla.edu/
∼awarth/ometa/ometa-js/). In this regard, Alex Warth’s OMeta system (see
ref) is relevant, as it facilitates this kind of emulation in the Web environment.

The Lively Kernel project at Sun Microsystems has many ties to work at
Viewpoints Research, best summarized in two technical reports (see refs). Much
more thorough coverage of this related work and others may be found in these
reports.

We have learned much about JavaScript as a programming language. While
it is beyond the scope of this paper, some early impressions are recorded in a
Tech Report [11].

11 Future Work

This kernel we have described is lively in yet one other respect: It is small and
simple, and thus easy to change and port. So if we imagine a secure subset of
JavaScript, or a nice 3D graphics system for the Web, it should be straightfor-
ward to port the Lively Kernel to these environments and to observe immedi-
ate results in the practical world of active Internet content. We have already
gone through several complete rewrites of the system and have found it to be a
tractable task. For instance we rewrote the entire graphics substrate from one
built on a flat graphics model (Java2D) to a retained graphics model (SVG) in
roughly two months. Our experience suggests that many meaningful transforma-
tions of the Lively Kernel could be done by a graduate student or other serious
programmer in a month or two. Simple experiments can, of course, be tried in
much less time.

We list here some areas that we have identified for future work:

Caja. [http://google-caja.googlecode.com/files/caja-spec-2008-01-15
.pdf] is a secure subset of JavaScript. At the time of this writing, it is a research
project that has not yet been tried on real applications. But if the Lively Kernel
can be ported to the Caja model, it will be an existence proof of an entire
application platform with known modularity and security properties. We hope
to produce a version of the Lively Kernel that is consistent with the Caja rules for
security, thus ensuring that Lively mashups and other cooperating applications
will be well-behaved.

Lessphic. [http://piumarta.com/software/cola/canvas.pdf], as its name
suggests, is an alternative to the Morphic architecture with various desirable
properties. We are investigating a port of the Lively Kernel to the Lessphic model
for the purpose of validating some of the apparent benefits of this design [10].

GUI Builder for the Internet [http://users.ipa.net/~dwighth/smalltalk/
Fabrik/Fabrik.html]. The current Model and Widget framework of the Lively
Kernel has been designed to facilitate extremely simple (drag-and-drop) con-
struction of useful panels to control all sorts of Web-based resources. We hope
to demonstrate a number of these in the future [14].

http://www.cs.ucla.edu/$sim $awarth/ometa/ometa-js/
http://www.cs.ucla.edu/$sim $awarth/ometa/ometa-js/
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://piumarta.com/software/cola/canvas.pdf


The Lively Kernel: A Self-supporting System on a Web Page 49

End-user programming. All of the required elements to support an Etoy-like
environment already exist in the Lively Kernel. We believe that could enable the
creation of interesting active Web objects conceived and built by end users.

Beyond JavaScript. [http://piumarta.com/software/cola/canvas.pdf].
We have only used JavaScript because it is available in every browser. We find
that we have no need for a number of features in the language, and this sug-
gests the possibility of simpler host implementations that are smaller and run
faster [9].

Beyond SVG. [http://www.vpri.org/pdf/steps TR-2007-008.pdf]. We
have similarly been using SVG because it is available in many browsers. Here
again, we find no need for many features in the standard, and this suggests the
possibility of simpler implementations that are smaller and run faster [7].

Beyond Browsers. Having turned Web programming upside down in order to
achieve a simpler and more general world within the browser it is hard not to
ponder, from time to time, going all the way and building a complete browser
within the Lively Kernel.

12 Conclusion

During the Lively Kernel project, we have learned some things about the ker-
nel as a concept and as a vehicle. Rather than complain about the languages
available or the inconsistencies between various browsers, we have done our best
to pick one viable solution and to preserve every bit of liveliness for the devel-
oper and ultimately for end users. Rather than dwell on perfection in one area
or another, we have pressed for the ability of end users to immediately publish
and share their their creations. Having glimpsed the possibility, our passion is
now to enable such authoring and sharing for every user of the Internet. It is our
hope that, seen in this fresh perspective, and now available as a tangible artifact,
the Lively Kernel may inspire further progress toward simplicity, generality and
liveliness in Web programming.

Acknowledgements

The authors wish to acknowledge the help of Charles Jackson, Alan Lancendor-
fer, and Mary Holzer for their help in setting up the Lively Kernel Web site, and
Pekka Reijula and Mikko Kuusipalo for their contributions as interns, including
much early testing of the Lively Kernel application framework. Also Richard Or-
tiz for his help with a number of application and porting experiments, Kristen
MacIntyre for contributions to text display and affine transforms, and Mario
Wolczko, Bob Sproull and Greg Papadopoulos for their enthusiastic support of
this project.

http://piumarta.com/software/cola/canvas.pdf
http://www.vpri.org/pdf/steps_TR-2007-008.pdf


50 D. Ingalls et al.

References

1. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web Browser as an Appli-
cation Platform: The Lively Kernel Experience. Sun Microsystems Laboratories
Technical Report TR-2008-175 (January 2008),
http://research.sun.com/techrep/2008/abstract-175.html

2. Ungar, D., Smith, R.: SELF: The Power of Simplicity. In: ACM SIGPLAN Notices
(December 1987)

3. Maloney, J.H., Smith, R.B.: Directness and liveness in the Morphic user interface
construction environment. In: Proceedings of the 8th annual ACM Symposium
on User Interface and Software Technology (UIST), Pittsburgh, Pennsylvania, pp.
21–28 (1995)

4. Maloney, J.H.: Morphic: The Self User Interface Framework. Self 4.0 Release Doc-
umentation. Sun Microsystems Laboratories (1995)

5. Ingalls, D., Kaehler, T., Maloney, J.H., Wallace, S., Kay, A.: Back to the Future:
The Story of Squeak, A Practical Smalltalk Written in Itself. In: The OOPSLA
1997 Conference (1997), http://ftp.squeak.org/docs/OOPSLA.Squeak.html

6. Kay, A., et al.: STEPS Toward The Reinvention Of Programming,
http://www.vpri.org/pdf/NSF prop RN-2006-002.pdf

7. Kay, A., et al.: STEPS Project First Year Report (2007),
http://www.vpri.org/pdf/steps TR-2007-008.pdf

8. Miller, M., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe active content
in sanitized JavaScript (January 2008),
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf

9. Piumarta, I.: COLA whitepaper: Albert, VPRI Research Note RN-2006-001-a,
http://vpri.org/pdf/colas wp RN-2006-001-a.pdf

10. Piumarta, I.: Lessphic: A disposable, light-weight graphical enviroment for FoNC,
http://piumarta.com/software/cola/canvas.pdf

11. Mikkonen, T. and Taivalsaari, A.: Using JavaScript as a Real Programming Lan-
guage. Sun Microsystems Laboratories Technical Report TR-2007-168 (October
2007), http://research.sun.com/techrep/2007/abstract-168.html

12. Various, History of Morphic, http://wiki.squeak.org/squeak/2139
13. Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern matching.

In: Proceedings of the ACM 2007 Symposium on Dynamic languages, pp. 11–19
(2007), http://portal.acm.org/citation.cfm?id=1297081.1297086

14. Ingalls, D., Wallace, S., Chow, Y., Ludolph, F., Doyle, K.: Fabrik: A Visual Pro-
gramming Environment. In: Proceedings of the ACM OOPSLA 1988 conf., pp.
176–190 (September 1988)

http://research.sun.com/techrep/2008/abstract-175.html
http://ftp.squeak.org/docs/OOPSLA.Squeak.html
http://www.vpri.org/pdf/NSF_prop_RN-2006-002.pdf
http://www.vpri.org/pdf/steps_TR-2007-008.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://vpri.org/pdf/colas_wp_RN-2006-001-a.pdf
http://piumarta.com/software/cola/canvas.pdf
http://research.sun.com/techrep/2007/abstract-168.html
http://wiki.squeak.org/squeak/2139
http://portal.acm.org/citation.cfm?id=1297081.1297086
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There are three approaches, I think, to sustaining the health of running systems:
designed perfection, instinctual adaptation, and learning. For small programs-
and for increasingly large programs over time-designed perfection is a viable
approach. Such software has been proved (rigorously) or rationally has come to
be believed to be impervious to variations in its environment, which is itself
assumed reliable using some mechanism. Software with designed perfection is
typically the most efficient, because it does not waste resources on adaptation
or learning. Experience has shown there is very little such software, but hopes
remain high and research is active and fruitful.

Instinctual adaptation uses built-in adaptation mechanisms to handle changes
in the environment. Sensors and effectors can be used to gauge the environment-
including the internal environment of the software-and make changes to the
software so that it can perform well. With the use of feedback mechanisms and
even evolution over time, entities that adapt instinctively to their environments
can demonstrate remarkable adaptability and survivability. Spawning copies to
handle larger loads, migrating nearer to frequently and heavily used resources,
and seeking collaborating services are examples of activities software components
can do that are instinctual. All the tools and mechanisms of of complex adaptive
systems are in play here: swarming, ant colony optimization, metaheuristics, and
game theory-all examples and not an exhaustive list-can all be applied here.
Systems that use this approach incur an overhead, both of space and time:
sensors needs to operate, some processing must be done to determine the right
action to take, and the effectors need to work. This is all in addition to what the
software has to do anyway. This approach works best when the environment is
complex and changes-but probably only medium complexity and slow changes.

Learning requires perception-representation-action loops within the software
to enable it to learn how to adapt and use the environment. Think about neu-
ral nets, Bayesian classification, and reinforcement learning as examples. In such
systems, the environment (including perhaps the internal environment) is sensed,
a representation is made, and action is taken based on ”thinking about” those
representations. The representations and the ”thinking about” processes are al-
tered based on the outcomes of the actions-this is what makes this a learning
approach rather than instinctual adaptation. The overhead for learning is even
greater than for instinctual adaptation. Not only do the sensors have to sense,
the processing of that data has to take place, and the effectors have to work,
but work needs to be done to improve the intermediate processing (which is the
learning). And what’s worse, before learning takes place, the software that needs
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to actually do something can be behaving poorly and probably incorrectly-that
is, it’s likely making mistakes. But when the environment is complex, is changing
rapidly and perhaps dramatically, and the environment includes other learning
entities, this is the best approach.

Therefore, there are benefits and costs to using learning over instinct as well
as to using instinct over designed perfection. In the natural world, designed
perfection is mostly the realm of inorganic matter. Such things don’t improve
or adapt, only change through deterioration. Instinctual adaptation is the realm
of all living entities. And any being with a nervous system is able to learn,
probably, though this is not thoroughly tested. What is interesting is that the
few experiments that have been done have shown that in the wild, the ability
to learn is not fully exploited-some flies, for example, are capable of becoming
more accomplished learners, but have not; and the reason is that being better
learners and even merely engaging in learning have costs in terms of survival
rates in the wild [1].

Adaptable approaches to health have some requirements. First is that it be
possible to see into the environment that the entity is sustaining itself within,
including, where necessary, its own internal mechanisms. Immune systems re-
quire the ability to see into a cell to determine whether it is a healthy member
of ”self.” Without this, resistance to disease and other attackers would be left to
barriers and the other, cruder supporting members of the immune-system cast.

Second is that there must be mechanisms that can take action and make
changes. For example, in chemotaxis, feedback loops control the methylation
and demethylation of transmembrane receptors; this (and some other mech-
anisms such as receptor clustering and receptor-receptor interactions) enables
cells to be able react to a wide range of chemical concentration gradients, as if
”remembering” what has recently been ”seen,” and thereby move toward food
sources and away from toxins. Methylation and demethylation are effector mech-
anisms in this system.

Next, perfect execution must not be required. Adaptation means moving from
a less perfect to a more perfect configuration for the conditions at hand, which
means that a range of not-fully-working behaviors must be able to be tolerated.

Next, complete before-execution design and implementation must be impos-
sible or impractical. That is, if designed perfection is an option, why not use
it?

And finally, the combination of sensing, possibly processing, and then acting
must represent a reasonable if not total model of how to interact with the envi-
ronment, including the internal environment. Another way of putting it is that
the entity that is sustaining itself must be an effective model for itself.

Evolution can be viewed as a form of learning at the population level, but
I regard it as a meta-level mechanism for changing the operating design and
parameters for the population. Thus, for example, evolution can change the
instinctual mechanisms or improve (or degrade) the ability to learn (quickly) in
order to balance the costs and benefits of learning.
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Now notice this: all the requirements for adaptable entities are contrary to
the requirements for designed perfection based on evidence provided by the work
and recommendations of programming language and software engineering re-
searchers.

To achieve designed perfection, visibility into the environment is limited to pa-
rameters that are passed (one way or another), with global information frowned
upon; visibility into modules is even more strictly discouraged-and in many pro-
gramming languages it’s impossible. Similarly, the ability to effect change at
runtime is either frowned on, forbidden, or not possible. The reason for these
restrictions is that they enable being able to reason about and eventually prove
that certain errors are not possible-this is what type systems are mostly about
(that and execution efficiency). Moreover, the languages whose programs are
easiest to prove things about are those without side effects.

A few researchers are starting to look at imperfect execution as a viable al-
ternative to perfection. Many mainstream researchers who hear their ideas are
shocked-sometimes they laugh. The notion that perfect execution might not be
required is contrary to everything they’ve ever learned. Designed perfection is
predicated on being able to do a perfect static design, either primarily with
people doing the designs or people creating models from which provably correct
code is produced. Therefore the situation of it being impossible or impractical
to do is assumed away from the get go.

Finally, though the source code is considered by today’s researchers as the true
model for the software-hence the word ”static,” which means roughly ”textual”-
the dynamic / runtime model is generally considered distasteful though more
minutely accurate than the source, and languages with the right level of reflec-
tion capabilities are not so common as would be preferred. ”Distasteful” only
because it is difficult to know whether the runtime samples you are able to
gather represent all the possible states (up to equivalence), and hence whether
you know everything about the program.

Although the requirements for designed perfection and the adaptive approaches
are diametrically opposed, I don’t want to leave the impression that one set is good
and the other bad, or that designed perfection should be abandoned. If it’s possible
to make some part of a software system perfect, please do it. I am confident that
over time, the size and complexity of systems that can achieve designed perfection
will grow, though more slowly than systems that don’t aspire so high.

The point is that roughly all programming language and software engineer-
ing researchers are pursuing designed perfection, and we need some who are
looking at the adaptive approaches to keeping software systems alive, well, and
functioning acceptably.
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Abstract. Huemul is a new implementation of Smalltalk. It is built under the 
principle of reuse of existing technologies. It aims to be compatible with Small-
talk 80 at the language level. Huemul does not interpret Smalltalk code. It trans-
lates methods directly to machine code, and they are kept like that in the image. 
With this approach, virtual machine code is kept to the bare minimum. 

Keywords: Smalltalk, virtual machine, JIT. 

1   Introduction 

When Smalltalk was first introduced, Operating Systems lacked many services and 
features needed by applications. The set of tools they provided were rather small, 
every application had to do everything by itself. Instead of focusing on the core busi-
ness, an application programmer had to provide everything from graphical interfaces 
to multitasking, file support, etc. Smalltalk was not an exception to that rule. 

But Smalltalk wasn't a normal application, it was a complete graphical environment 
that complemented the lack of functionality of the underlaying Operating System. The 
Smalltalk user (or developer) didn't have to worry about lower levels, because they were 
provided by the Smalltalk environment. One would just concentrate on the important, 
by reusing what was already made. 

As Operating Systems became more and more powerful, applications tended to 
trust many of their basic functionality to them. It is unlikely that a new application 
developed today would  implement a communication or graphical framework of its 
own. As all the applications shared their need for basic behavior, most of the  
functionality was standardized, and  concentrated in libraries. On top of the libraries, 
extended behavior formed frameworks, which could be used by the application pro-
grammer, in the language of his choice. The result of this process led to the model in 
Figure 1.2a. 

Almost thirty years has passed since the introduction of Smalltalk. Smalltalk sys-
tems have evolved too, and there are now many implementations. Some of them focus 
on speed, others focus on usability, others on simplicity, etc. But the basic underlying 
structure of them still resembles the original one. 

The current tendency is to delegate basic functionality to the Operating System, 
while maintaining some sort of control of the lower infrastructure and adapt it to the 
upper layers. Figure 1.2.b shows how actual Smalltalks interface with Operating  
Systems. 
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Fig 1.1a. Fig 1.1b. 
 
Within these actual implementations, Squeak [2] is the implementation that resem-

bles most the first Smalltalk System. It still draws its own interface, and interprets its 
own code, manages its own processes,  with some help from the Operating System.  

An advanced Smalltalk System like Visual Works [4] implements internally an in-
terface to the underlaying Operating System, it also interprets its code, but optimizes 
its execution on the fly, thanks to some advanced dynamic compiling and execution 
features. 

Dolphin Smalltalk [5] takes a different approach. It tries to use as much native 
functionality as possible. From native threads, to native graphics system. But it still 
uses an interpreter layer. 

There is a Smalltalk implementation called Smalltalk/MT [15] that can generate 
applications that doesn't need an interpreter to run. But the developing processes is  
 

 

  

Fig 2.2a. Fig 2.2b. 
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Fig 2.3. 

 
made by a normal interpreted Smalltalk, and as a last step before production, a native 
code executable can be generated. This executable once generated, becomes a stand-
alone application. It is neither a self sustained system nor a part of it. 

But what can be observed in these three implementations is that all of them include 
a certain amount of coding in their Virtual Machine that is already present in the sys-
tem, the interpreter is an example of that duplicity.  

Resources are scarce. Why don't we use those resources to get further on one path, 
instead on splitting those resources in parallel paths that lead to the same place?    

In this paper we present Huemul. Huemul is a new Smalltalk implementation. With 
Huemul, we take the concept of reusability to an extreme. Instead of providing its 
own libraries, Huemul tries to delegate as much as possible to the Operating System. 
If it is already there, Huemul just uses it. 

As can be seen in Figure 2.3, Huemul's Virtual Machine is tiny. It has just the 
minimum necessary to bootstrap the image, connect to the Operating System libraries 
and set up the dynamic call infrastructure. Huemul uses native code, native threads, 
native widget framework, native input/output, etc. It provides mechanisms to add new 
primitive functionality and access dynamic libraries on the fly, without touching the 
Virtual Machine at all, or creating any non-Smalltalk plugin. 

Huemul does not even have an interpreter. Every time a method is created or modi-
fied on the running system, it is compiled to native code, and it is immediately avail-
able for use. When the image is saved, all the methods are saved with it. Compiled 
methods are normal objects like any other object in the system. They can be accessed, 
modified or deleted dynamically. 

In the following chapters we are going to introduce some of the details of the im-
plementation of Huemul. 

2   Virtual Machine 

Virtual Machines [18] (VMs)  provide a platform-independent programming envi-
ronment that virtualizes details of the underlying hardware or operating system, and 
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allows a program to execute in the same way on any platform. The size and complex-
ity of the VMs varies, but the minimum abstraction mechanism may include at least: 
the CPU, memory, peripherals and support for the programming language. 

The processor is the main abstraction that a VM should include. The processor virtual-
ization layer is implemented by an emulation engine. The interpreter is in charge of exe-
cuting platform-independent code, in a platform-dependent environment.  

Most of the time, the illusion of having more than one unit of execution is handled 
by some sort of multiplexing mechanism implemented at the VM level. This mecha-
nism is called green threads as opposed to the platform-dependent mechanism called 
native threads. Green threads are lighter than native threads, and that is why they are 
called green. But what is most interesting about green threads, is that the VM has total 
control of them. 

VMs also virtualize memory. The allocation mechanism is always handled by 
some sort of Object Memory. This Object Memory replaces the standard library func-
tion malloc. The memory allocation is extended by this means to suite the needs of 
the virtual architecture that is being implemented. The restoring mechanism of mem-
ory is handled by some sort of Garbage Collector. The Garbage Collector automattes 
the the return of memory to the free pool. 

The peripherals are implemented differently depending on the VM architecture, 
and also on the programming language that the VM may support. In Smalltalk, primi-
tives are the link provided at the language level to support low level extensions. At 
the VM level, these primitives are plugged into VM extensions that are either embed-
ded in the VM, or implemented by some plugin mechanism  or in the form of a dy-
namic library. 

The support to the language is the mechanism that each VM has to provide to pre-
sent the run-time environment to the user. In Smalltalk, the VM should include the 
handling of exceptions, method binding, closures, contexts, etc. 

Huemul tries to free the VM from all the complexities, and either tries to push 
them down to the underlaying Operating System or pull them up to the image. With 
this methodology, Huemul's VM is just 4500 lines of code, and has an executable of 
less than 100KB. Huemul does not have an interpreter. Most of the extensions are 
driven by OS libraries with practically no VM intervention. Huemul uses native 
threads instead of green threads. The implementation details are explained in the  
following chapters. 

3   The Interpreter 

In many Smalltalk implementations, the first execution phase is handled by the inter-
preter inside a classic Virtual Machine (VM) that reads in and executes the bytecodes. 
Think of the VM as a simulator for a complete machine, and the interpreter is a CPU 
simulator whose instruction set is Smalltalk bytecodes. However, interpreting byte-
codes makes a Smalltalk program several times slower than comparable C or C++ 
programs [13]. 

Smalltalk is a dynamic language, modification of the code at runtime is not only al-
lowed, it is also encouraged. To implement this behavior, every time a method is cre-
ated or modified, it has to be translated to bytecodes on the fly. This work is done by 
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the Smalltalk compiler. The compiler has two phases, the first one is done by the 
parser. The parser translates source code to the Abstract Syntax Tree (AST). The AST 
is a more convenient computer-usable representation of the code. The second phase is 
done by the translator. The translator converts the AST to bytecodes. When a message 
is sent to an object, one of the methods is selected by the VM, then its bytecodes are 
loaded and executed by the interpreter. 

Using an interpreter adds quite a bit of execution overhead. A common solution for 
high-performance VMs is to use dynamic translation implemented in Just In Time 
(JIT) compilers. 

Most of the VMs that include JIT compilers still have to do the procedure ex-
plained above. JIT mechanisms are applied at runtime. When the runtime system  
notices a method has been called enough times to make it worthwhile to generate ma-
chine code, it is translated on the fly. Future calls to the method will execute the ma-
chine code directly. Think of the code generated by the JIT compiler as a method 
code cache that simply run faster than interpreted code. This can provide certain 
speed-up, but better results are obtained with a different procedure. 

A further step can be taken to achieve higher performance. Object oriented pro-
gramming languages don't gain much execution speed by implementing classical 
static optimization techniques [13]. A dynamic gradual optimization based on live 
statistics taken from the running code gives a much better result. These advanced 
techniques include algorithms like Polymorphic Inline Caches (PICs), type feedback, 
aggressive dynamic code inlining, etc [13, 19]. With these techniques, instead of try-
ing to generate the fastest code at the first compilation, JIT compilers gradually  
produce faster compiled code, as the statistical information becomes richer. In  this 
way, highly optimized code is used to execute the most called methods, which leads 
to a high speed-up in the overall execution of an application. The continuous compila-
tion of code has the disadvantage of being resource intensive, but the result clearly 
outperforms the effort of doing so. 

 

Fig 3.1. 
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Interpreters are fairly complex pieces of code. A big part of a VM is devoted to the 
interpreter. There is a development cost associated with them, as they have to be 
coded, maintained and debugged. Also a good bytecode instruction set has to be cho-
sen. Compiler translators are complex pieces of code too. They have to be compatible 
with the bytecode instruction set that has been chosen, and they have to be coded, 
maintained and debugged too. 

As can be seen in Figure 3.1, and from what has been explained above, the transla-
tor-bytecodes-interpreter-CPU phase, resembles a lot in terms of functionality to the 
JIT compiler-native code-CPU phase. If we could just get rid of one of these two 
phases, we would cut the effort of developing the VM substantially. We would have 
to maintain just one compiler, instead of two. We wouldn't have to implement a byte-
code instruction set. And what is most important, we wouldn't need an interpreter at 
all. As the generated code is native from the very first compilation, the CPU is the 
device used to interpret, or in this case, just execute the code. 

This is where the reusability philosophy enters. Huemul uses the CPU as a “hardware 
interpreter”, and uses the native machine instructions of the CPU as bytecodes, saving 
significant VM space and development effort. It also benefits from the fact that the first 
(and almost unoptimized) execution will be done faster than if it would have been inter-
preted. Another advantage of this approach is that it has no development effort in the 
interpreter, as the device that we use is already there, we just reuse it. And last of all, 
Huemul could still benefit from most of the techniques available to speed up dynamic 
object oriented languages, like PIC and automatic recompilation and inlining of code, 
because these phases are implemented later in the execution phase. 

Huemul's compiler is implemented totally in Smalltalk. Both the parser and the 
translator are ported from Squeak. By using the same parser as Squeak we ensure a 
complete compatibility at the language level to it. Exupery [10] is a JITer for Squeak.  
 

 

Fig 3.2. 
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It translates from Squeak bytecodes to native x86-32 machine code, and also performs 
dynamic optimizations. We ported Exupery to Huemul as its translator from AST to 
machine code. 

Exupery works roughly in three phases, the first one generates high level AST 
from bytecodes, the second one transforms high level AST to low level AST, and the 
third one generates machine code. 

In Huemul, we generate the AST nodes from Squeak's new compiler parser [3]. 
This AST is neither compatible with Exupery's high level AST nor with the low level 
one. So we developed a transformation from the Squeak AST to the low level 
Exupery AST. We then we generate machine code with the third pass of Exupery. We 
don't use any of the dynamic optimizations built in in Exupery, but we are planning to 
implement them sometime in the future. 

The execution environment of Huemul is represented in Figure 3.2. Huemul tries to 
overcome the lack of dynamic optimization by  statically inlining the most frequently 
used methods, like integer operations and general methods like #at:, #at:put, #class, 
etc. When Huemul's JIT extension become available, those static optimizations may 
not be needed any more, as they would be optimized dynamically. 

We are pleased to say that in spite of this lack of functionality, Huemul still 
achieves  reasonable overall performance. We made a superficial comparison between 
Huemul, Visual Works and Squeak (with and without Exupery) using Squeak's tiny 
benchmarks on each Smalltalk. These benchmarks measure the number of bytecodes 
executed per second (b/s), and the number of message sends accomplished each sec-
ond (s/s). The results of these benchmarks are unfortunately not representative of how 
a complex application would behave. There is also a generalization problem, as the 
platforms benchmarked don't use the same bytecode set. Also, in the platforms with a 
JIT and in Huemul, there is no bytecode execution at all. Moreover, we can't even talk 
about how many sends are performed each second in inlining environments. But it 
serves as a basis to understand the point explained here. 

The machine we used for the benchmark was an AMD Sempron of 3.1Ghz with 
2GB of memory. Windows tests where done with Windows XP SP2, and Linux tests 
where done with OpenSuse 10.3, kernel version 2.6.22.17-0.1. The next table summa-
rizes the results: 
 

Smalltalk bytecodes / second (b/s) sends / second (s/s) 

Squeak 3.9 93,362,509 4,250,358 

Squeak 3.9 + Exupery 0.11 785,878,741 12,771,577 

Visual Works 7.5 non commercial 755,162,241 80,312,362 

Huemul 0.6 832,520,325 33,552,522 

Smalltalk MT 5.20, evaluation 
version 

898,245,614 25,831,057 

Dolphin Smalltalk X6 2006.6.02.3 
Community Version 

212,096,106 10,350,066 
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The first four benchmarks where done in Linux and the last two in Windows. The 
tests confirmed what we expected with Squeak and Dolphin being the slowest plat-
forms. It is the logical result as both of them are interpreted. On the other hand, it is 
good to know that Exupery makes and excellent job as Squeak's JIT, even outper-
forming Visual Works in the b/s benchmark. Although Huemul implements Exupery, 
it doesn't use it in the same way as Squeak does. And, as we have not yet imple-
mented Exupery's optimizations, we have carefully chosen the right methods to inline 
statically. We also have a simple Object Memory design (explained later) that is op-
timized for speed. This all takes us to the second place in the b/s benchmark. Small-
talk MT is the winner in the b/s benchmark, and is compiled to native code the same 
way that Huemul is. 

In the s/s benchmark, Visual Works clearly outperforms the rest of the implementa-
tions. These high s/s numbers are due to its effective JIT. All that this benchmark does is 
to send the same message to the same kind of object again and again. A good JIT would 
detect that behavior and would inline as much code as possible. That is why Visual 
Works outperforms the others. But, Huemul still outperforms Squeak even by imple-
menting the same translator. This is because the send mechanism chosen for Huemul is 
simpler, and because Squeak's implementation of Exupery has to deal with its relatively 
complex internal architecture. 

There is another tradeoff on using native code instead of bytecodes. This penalty is 
due to the size of the compiled methods. While most of the bytecodes are imple-
mented with just one byte, each native code instruction requires many bytes. And 
most of the time, more than one instruction is required to do the same job as a single 
bytecode. But, code size is not the only overhead. Bytecodes are normally imple-
mented so that the only references to the outside world are made by accessing indexed 
literals contained in the method itself. Huemul on the other hand, references outside 
objects directly within the code. Since neither the address of the generated code nor 
that of any designated object is fixed in memory, some relocation information is gen-
erated to support these outside references. This relocation information makes Huemul 
natively compiled methods bigger than normal methods. 

In interpreted Smalltalks, debuggers normally create the debug information on the 
fly. Either by decompiling the bytecodes, or by generating AST nodes from the source 
code again at debug time. Unfortunately, Huemul's debugger can't use neither of the 
two approaches. The first approach can't be used because the code generated by the 
native compiler is much more complicated than bytecodes. Decompiling native code 
to make it match the source code is a difficult task by itself, and it is even worse if it 
must be done on the fly. Generating debug information from the AST while debug-
ging is possible, but the generated code may not match the original AST nodes since a 
lot of optimizations are applied after the AST node generation. So the debug info gen-
erated at debug time would not match the optimized code. The solution applied in 
Huemul, is to generate debug info while compiling the method. This debug info is 
saved with the method, and it is accessed at debug time. This debug info matches the 
optimized code. The problem with this approach is that methods become bigger. 

The following table shows a comparison between some methods in Squeak and in 
Huemul. 
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Huemul 0.5b Method Squeak 3.9

Code Code + info 

Ratio 

Integer #digitDiv:neg: 598 8,027 22,691 37.94 

Float #absPrintOn:base: 544 5,973 18,885 34.71 

IntegerTest 
#testPositiveIntegerPrinting 

2,939 28,236 79,252 26.96 

Object #changed: 39 160 488 12.51 

Class #category 80 338 1,258 15.72 

True #ifFalse: 17 10 90 5.2 

 
As can be seen, Huemul methods are bigger than Squeak methods. The ratio be-

comes larger as the size of the method increases. This problem makes Huemul images 
bigger than the images of other implementations. The average ratio of all the methods 
in the image is about 20 times. This is the price that has to be paid in order to use na-
tive code instead of bytecodes. 

4   Object Memory 

In Smalltalk, everything is an object and all the objects reside in the Object Memory. 
The description of the layout of each one of the objects is an important matter, as it 
will define how easy or difficult it is to access its information. There is a direct rela-
tionship between the steps required to access an object's contents and the overall exe-
cution speed. It will also affect the resulting size of the image. Unfortunately, we can 
not have at the same time, both the smallest and the fastest object layout. We have to 
make a compromise between the two. 

Huemul inherits much of its functionality from Squeak [2]. Squeak's Object Mem-
ory is optimized for size. There are two main object layouts in Smalltalk [9]; Small 
Integers and the rest of the objects. This main distinction is also valid in Squeak. Al-
lowing the Small Integers to be saved without a header, saves a lot of space, as there 
are a lot of Small Integers in an image. But Squeak further divides objects into three 
categories. Depending of the class of the object and its size, a different header is cho-
sen. These three headers vary in size and complexity. Figure 4.1a shows the three 
different header types.  

  

Fig 4.1a. Fig 4.1b. 
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If the object's class is one of the 32 designated (and most frequently used) classes, 
and its size is less than 64 words, it just gets object header 0, which is just 1 word over-
head. If the object class isn't one of the 32 special classes, but it is smaller than 64 
words, it gets the 2 word header. And lastly, if the object's class isn't a special class or 
it's bigger than 64 words, it gets the full 3 word header. This header selection procedure 
saves a lot of space, but on the other hand, it adds a certain amount of complexity to the 
basic object operations. 

For example, if we need to find an object's size, we would first have to see if it is a 
Small Integer or not. Then we would have to see if the object is variable, then it 
would be allowed to ask about its size. Then, we would have to ask if the header is 1 
word, or more. If the header is 1 word in length, we have to get the bits of the object 
that represents the size, but if the header is 3 words in length, we would also have to 
take care of Header -2. It is easy to see that this mechanism has much complexity. 
Moreover, it is fairly complex to build a good just in time compiler for Squeak,  
because much of the CPU time is spent in circumventing this complexity [10]. 

Huemul's Object Memory, on the other hand is designed with simplicity in mind. As 
can be seen in Figure 4.1b, every object in Huemul, except Small Integers, have the 
same header. This header has an overhead of 3 words. It is a fairly big overhead in terms 
of size, but it is a big advantage in terms of execution speed. Class, size or information 
access  is done in a very straightforward way, and this allows an easy inlining of most of 
the basic object operations of the Smalltalk language. 

5   Tagged Integers 

Smalltalk requires that everything be an object. But, as shown in the Blue Book [9], a 
simple optimization for size is to encapsulate small integers. With this mechanism, we 
avoid using a header for Small Integers, and doing so, we gain a lot of space, since 
Small Integers are used a lot in a Smalltalk system. A drawback for this approach is that 
we have two methods of obtaining an object's class. First we have to examine if it is a 
Small Integer, in the case it is not a Small Integer we must look up the object's class. 

The encapsulation of Small Integers, as defined in the Blue Book, is done by using 
the least significant bit of the word as a flag that tells if this word is a Small Integer or 
if it is a pointer. If it is a Small Integer, the flag is a 1, if it is a pointer, the flag is a 0, 
this is illustrated in Figure 5.1a. 

If implemented in this way, accessing an object pointer is a direct reference, as 
long as every object is aligned. Small Integers, on the other hand, can't be used  
 

  

Fig 5.1a. Fig 5.1b. 
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directly in arithmetic operations. They have to be detagged before they are used, and 
be tagged again afterwards. Optimizers make a good job circumventing this problem. 

But there is another alternative called 0 tagged integers. As opposed to what is ex-
plained before, Small Integers have a 0 tag, and object pointers have a 1 tag, as shown 
in Figure 5.1.b. 

With this approach, we can not access a pointer directly, because it is pointing to 
the next byte of where the object actually is. Now the access to the object is per-
formed by pointing to the address minus one. It is almost the same mechanism as  
before, because in x86 CPU architectures, load the contents of pointer X is in fact, 
loading the contents of pointer X + 0. But even on architectures where the loads are 
not the same, the speed gain obtained from 0 tagged integer optimizations in arithme-
tic operations would compensate that setback. 

With 0 tagged integers we don't need to detag/tag for most of the frequently used 
arithmetic operations. For example, the most common operation is Small Integer addi-
tion, and this can be done without the detagging/tagging mechanism. In fact addition 
and subtraction are the most benefited operations, since we don't have to tag or detag, 
and we don't even have to adjust the result to correct it. 

The first version of Huemul used 1 tagged integers. When the switch was made, 
some changes were made to the VM and the compiler. In the VM, we had to change 
the macros that checked, tagged and detagged Small Integers to support the new for-
mat. But we also had to change the way we  accessed to the other objects. Before the 
change we just used the object pointers directly, as they were normal C pointers to 
structures. But after the change, we had to create two new macros to tag and detag 
object pointers, and surround all the accesses to objects by one of these macros. This 
leads to having to type more, but without an execution speed tradeof. Because, when 
the VM is compiled with optimizations, this macros are inlined and embedded in the 
load instructions. 

The compiler had to be changed too, in order to support the new format. But, since 
we already had the tagging and detagging mechanism of Small Integers, we only had 
to adjust it. And as mentioned above, the instructions and addressing mode to access 
the objects was already there, the only difference was that we had to add the -1 offset 
to all of them, instead of the implied 0. 

When Huemul switched the use of 1 tagged integers to 0 tagged integers, the per-
formance gain measured by the tinyBenchmarks was about a 10%. Despite the 
benchmarks being not very accurate, it was representative enough to demonstrate that 
it was worth the effort of converting the objects footprint, the changes in the virtual 
machine and the embedded compiler. 

6   Processes 

Smalltalk units of execution are defined by instances of the Process class. These 
Processes are most frequently implemented as application threads or green threads. 
This means that the Virtual Machine is in charge of the life cycle and scheduling of 
the processes. So most of the Smalltalk VMs have an embedded scheduler to run this 
mechanism. 
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The VM interpreters that implement green threads are written as single threaded 
applications. The simultaneous execution of Smalltalk processes is thereby imple-
mented by multiplexing this single thread between all the active processes. This  
solution works fine for single core, single processor computers, sometimes even out-
performing native threads solutions, as the creation and context switch of a green 
thread is cheaper than with a native thread.  But single threaded applications don't use 
more than one CPU at a time, no matter how many cores or processes a system may 
have. There are some workarounds like running the interpreter, the garbage collector 
and other house keeping tasks in separate threads. There are also solutions that im-
plement multiple different instances of the virtual machine running in some sort of 
cooperative network. 

Posix threads [17] (pthreads) are the standard mechanism to implement native 
threads in Unix environments. Huemul uses pthreads as the back end for the Process 
class. In this way, the Operating System takes control of the execution and scheduling 
of the threads, so there is no scheduler in Huemul. A direct advantage of this behavior 
is the seamless and automatic integration  of Huemul with with multi CPU and multi 
core system, as native threads are efficiently balanced among them. 

7   Contexts 

Every process in Squeak is further divided in smaller activation records called con-
texts. These contexts keep state information about the execution of methods or blocks. 
Instead of having one stack for each process, it is distributed among the contexts. 
When a method is executed, it is assigned an instance of the class MethodContext, 
and when a block is executed, it is assigned an instance of the class BlockContext. All 
the contexts have a pointer to the context in which the call was made. The block con-
texts also have a pointer to the context that created the block. Following these pointers 
we can traverse the complete stack of a process. A method context can only return to 
the caller, following the pointer. On the other hand, block contexts can return to the 
caller, or to the creator. 

Huemul uses the x86-32 CPU's native code to implement this behavior. In that 
CPU, each process is normally bound to just one stack. When a function is about to be 
executed, the arguments are pushed into the stack, then a call instruction that auto-
matically pushes the return address on the stack is issued, then the jump to the func-
tion is made. When the function is about to end, a ret instruction is issued that returns 
to the address previously saved in the stack. Then, the caller removes the arguments 
from the stack to leave it like it was before. 

In Huemul, we have neither method contexts nor block contexts. We have one 
stack for each Smalltalk process, and we use the simple mechanism described above 
to implement method contexts. When a message is sent to an object, the receiver and 
the arguments are pushed onto the stack. Then the function that selects which method 
to run, given the receiver and the selector is called. And lastly, the selected method is 
called. When the method ends, it issues a ret instruction as described.  

There is no standard way in x86-32 CPUs to unwind the stack to a place other than 
the immediate caller. As mentioned earlier, blocks can return to the caller, or to the 
creator. There is no problem to activate a block that just returns to the caller in the 
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same way we activate methods. But if the block wants to remotely return to the crea-
tor we have to apply some mechanism to save the state of the creator. Once the state 
is saved, we can restore it in case of a remote return. 

Huemul uses the standard setjmp/longjmp C functions to implement this behavior. 
Setjmp/longjmp are defined in the C standard library to provide "non-local jumps" 
outside of the normal function call and return sequence. The paired functions setjmp 
and longjmp provide this functionality through first saving the environment with 
setjmp to which longjmp can "jump" from a point elsewhere in the program. 

If a piece of code creates a block that may remotely return, it issues a setjmp (save 
the environment). This helps the remote returning block to return home by issuing a 
longjmp (restoring the saved environment). 

Apart from blocks, there is another mechanism that alters the normal flow of exe-
cution. This mechanism is triggered by the Exception Handling System (EHS). The 
EHS is basically supported by two methods: #ensure: and #on:do:. The first method is 
used when a block has to be executed whatever happens with the execution of another 
block. The second method is used when a block has to be executed, only when certain 
exception is triggered while executing another block. 

Each Huemul process has a list of contexts that have been guarded against excep-
tions, and the blocks that have been assured. This list is maintained by the EHS 
mechanism. When either #ensure: or #on:do is sent to a block, the EHS mechanism 
issues a setjmp to save the execution state. Then the block is evaluated as usual. If the 
system triggers an exception, the EHS searches the list in order to find a suitable ex-
ception handler. If the correct handler is found, its exception block is evaluated, if it is 
not found, the default exception handler block is evaluated. If an ensured block is 
found during the process described above it is evaluated. The contexts of both the 
ensured and exception blocks is restored by a longjmp function.  

8   Traits 

The solution for code reusability in Smalltalk is based on single inheritance and 
polymorphism. But there are situations when two or more classes that don't inherit 
from the same root class, want to implement and reuse the same behavior, without 
copying the methods in all the classes. Other object oriented languages implement 
mixins or multiple inheritance to circumvent this problem. Traits [11] gives an alter-
native to those mechanisms, leading to a solution more compatible with the Smalltalk 
language. The idea behind a trait is to have a separated repository of methods, that can 
be merged in a efficient and controlled way into a class. In this way, different classes 
may share the same behavior, even if they don't relate to each other. 

There are two major approaches for the implementation of traits; static and dy-
namic. With the first approach, trait compositions are flattened at compile time, and 
trait methods appear as normal methods to the classes that use them. With the dy-
namic approach, there is no physical inclusion of the trait at compile time. The bind-
ing of the method is done at runtime. While Squeak uses static traits because it doesn't 
require any change in Squeak's virtual machine, Huemul uses the dynamic approach. 
It doesn't have the complex flattening mechanism required by the static approach, 
instead it extends the method search mechanism, that binds the method at run time. 
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Huemul uses the same syntax as Squeak to operate with traits. This was made in 
order to get compatibility at the language level with it. Huemul's Class Browser tool 
is trait aware. You can use it to create, modify or delete traits, you can work with its 
methods and also with classes that use them. But in the example we will use typed 
commands in order to explain its mechanism better. 

Traits are declared with a syntax similar to a class declaration; for example: 

Trait named: #TNewTrait uses: {} category: ''. 

This piece of code would declare a new trait called TNewTrait. which doesn't use 
other traits and doesn't belong to any category. Once declared, the trait is placed at the 
system dictionary, like any other global variable. Then, we could add methods to the 
trait, as if we were adding methods to a normal class; we could do that in the Class 
Browser tool, or achieve the same result with a line like this: 

TNewTrait addSelector: #aMessage withMethod: 
aPreviouslyCompiledMethod. 

Then, we would create a class that uses this trait: 

Object subclass: NewClass uses: TNewTrait  
instanceVariableNames: '' classVariableNames: ''  
poolDictionaries: '' category: ''. 

The difference with a normal class declaration is the “uses: TNewTrait” clause, 
that tells the system to create the class, but taking into account that this class imple-
ments the named trait.  

When we send a message to an object, the search mechanism starts looking for the 
method in the method dictionary of the object's class. If it doesn't find it there, it 
would normally try to search for the method in the method dictionary of the parent 
class of the object's class. Instead of doing so immediately, the searching algorithm 
see if the object's class uses traits, and if so, it includes the trait composition in the 
search for the method. This searching through the trait composition could also lead to 
the recursion on other traits, that are used by the original trait. Then, and only after the 
search on the trait composition failed, it continues up to the parent class. 

There is a penalty in the speed of the algorithm, as it has to search for a method in 
more places than it would otherwise have to. And there is also the overhead of calcu-
lating the trait composition as well. But this penalty only applies to classes that uses 
traits. Besides, as the search mechanism is cached, this penalty is mostly hidden be-
hind the cache. 

Going back to the example, if we tried to send the message: #aMessage to an in-
stance of NewClass, the algorithm would start looking in its method dictionary and it 
would fail. Then, instead of going up to Object, it would check for the existence of 
#aMessage in TNewTrait, which would success, returning the address of the correct 
method to the caller. As can be seen from the example, although the implementation 
is different in Huemul than in Squeak, the result is exactly the same. 
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9   Graphical User Interface 

The GUI (Graphical User Interface) defines the look and feel of an application. It is 
an important factor  to the acceptance and usability of a system. In the times of the 
earlier Smalltalk implementations, the use of GUIs wasn't very widespread, and there 
weren't any standards. So, the first Smalltalk Systems implemented their GUI by their 
own. Nowadays, many Smalltalk implementations still use this approach. Huemul 
does not draw its graphics interface. It relies on the GTK [1] graphics toolkit to do the 
job. Huemul just uses a GTK wrapper ported from the original GTK Wrapper [8].  

By using an existing GUI package, all of its features come for free into the hands 
of the Smalltalk programmer [14]. Many useful features like localization, theming, 
extensibility, etc. are standard. The user also benefits from this facility because they 
don't have to learn a different graphical platform. Huemul and all the developed ap-
plications look and feel as any other native application. 

Huemul has a built-in set of development tools that cover the basic Smalltalk de-
velopment experience. But they are built with the GTK framework. In this way, 
Huemul implements an intuitive user interface that is easy to adopt for the experi-
enced user and the novice. 

The GTK framework is built in C, but it specially designed to be wrapped by other 
languages. Most of the library functions take the first argument as the receiver (the 
Smalltalk self pseudo variable). Huemul maps Smalltalk classes to GTK classes. The 
hierarchy structure of the classes is rooted at the GPointer class. This class has a han-
dler as its only variable. The handler is the pointer to the external GTK structure of 
the same name. All the GTK functions are wrapped by the external library call 
mechanism of Huemul. Implementing each of the GTK functions is straightforward 
thanks to this mechanism. 

For example, the GTK window class is called: GtkWindow. In Huemul there is a 
class called GtkWindow that wraps around methods from its GTK counterpart. The 
function to resize the window is called gtk_window_resize. Its arguments are: the 
window itself, the width and the height. In Huemul the GtkWindow class has a #re-
size: method that accepts an instance of Point as its argument. This methods calls the 
GTK library function using self as the first argument, the point's x variable as the 
width, and the point's y variable as the height. All other methods are implemented in 
the same way. 

Huemul is designed to be easy to connect to standard UNIX libraries. Huemul has 
a wrapper around the UNIX dynamic library loader. It also has a set of classes to ac-
cess standard C structures and data types. The whole GTK wrapper is built around 
this concept, but there also other libraries like libc already wrapped in the system. 
For example the GTK library is opened like this: 

Gtk := ExternalLibrary new. 

Gtk name: 'libgtk-x11-2.0.so'. 

Gtk open. 

And the function named above would be called with something like: 

(Gtk functionNamed: 'gtk_window_resize') invokeWith: 
windowHandler with: (ExternalAddress fromInteger: 
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aWidthInteger) with: (ExternalAddress fromInteger: 
aHeightInteger). 

Which is the Smalltalk equivalent of the following C code: 

gtk_window_resize( windowHandler, aWidthInteger, 
aHeightInteger ); 

Everything is done at runtime, no need to recompile anything at the VM level, or 
write an external plugin. 

The GTK framework also supports the callback mechanism to send messages gen-
erated by GTK itself (and other sources as well). These callbacks are ready to be 
wrapped too. Huemul uses this mechanism to pass events from the GTK system to 
Smalltalk.  

Almost the entire wrapper is written in Smalltalk. The only exception to this is the 
use of some macros that are defined in some GTK C headers. These macros are used 
to initialize some of the constants values used by GTK. If this macros were imple-
mented in Smalltalk by the wrapper they would have been implemented hardcoded. 
This is not a good practice since the moment that something changes in the library, 
that would lead to a malfunction of the wrapper. 

10   Portability 

Huemul's minimalistic approach to the VM has the advantages already explained, but 
the main drawback of this approach is portability. The system is being developed in 
Linux with x86 CPUs of 32 bits. The CPU was chosen because it is in widespread 
use. The Operating System was chosen because of the facilities and tools available for 
the low level compiler environment. As the image contains natively compiled meth-
ods both the image and the VM are bound to the chosen platform.  

Most of the Smalltalk implementations provide image compatibility between  
platforms, with or without a conversion mechanism. This is a fairly easy task for an 
interpreted image, but not for a natively compiled image. Huemul's high degree of 
integration with existing technologies produces a high dependency with the underlay-
ing Operating System, making portability more difficult to achieve. 

First we should analyze the portability of the VM, and then, the portability of the 
image, as both of them are platform dependent. 

Huemul's VM is small and simple, and it is written in C by now. The elements 
bound to the platform in the VM are: the send mechanism, the use of setjmp/longjmp 
and the load of libraries at run-time. The send mechanism in Huemul is almost com-
patible with the C calling convention, but with some variants that should be consid-
ered but, as the C language has been ported without problems to many platforms, that 
would help us a lot. We are using gcc to compile the VM, and gcc is widely available 
in many platforms. The high degree of compatibility of the standard C libraries also 
helps with the setjmp/longjmp issue, as it is a standard C mechanism, there should not 
be a problem. The dynamic use of the libraries is something bound to the Operating 
System. All major Unix variants have some sort of mechanism of doing so. Mac OS 
X is Unix like, so there will be no problems. Windows has a similar mechanism. 
Other OS should be analyzed separately. So porting the VM should be as easy as  
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considering a solution for each of these three issues. Once that is accomplished, the 
standard distribution and build mechanism of C sources of other applications apply. 

The portability of the image is another matter. The main problem here is that the 
methods are saved with the image, and the code is compiled natively on each plat-
form. One approach would be to populate the image with each platform's version of 
the method, and also include each of the platform's extensions in the compiler. With 
this mechanism the image could be distributed as is, throughout all the different plat-
forms. This may be doable, but we don't consider it useful. Compiled methods take a 
lot of image space, with this approach, we would have to multiply the space require-
ment by the number of platforms supported. That is a lot of space wasted considering 
that we are going to use just one platform code set at a time. This issue may change if 
some sort of fragmentation of the image is applied. This would lead to a smaller foot-
print of the image, loaded at runtime. 

A much more efficient approach would be to forget about image automatic port-
ability, and provide some sort of conversion mechanism. This conversion mechanism 
could be though as a cross compiling procedure. If conversion time is an issue, the 
conversion mechanism could be focused to just some parts of the image, such as the 
compiler itself and the bootstrapping methods. 

The embedded Smalltalk compiler is implemented in Smalltalk itself, and it uses 
Exupery as the machine code generator. Nowadays, Exupery just supports the genera-
tion of x86-32 machine code, but it is prepared to be extended to support other CPUs 
as well. If the target platform doesn't use a x86-32 CPU, we would have to extend 
Exupery to support it. Once this task is complete, we would just use Exupery as the 
cross compiler, that in conjunction with a tracer program, would help us to create the 
new image. This new image would be ready to be loaded in the new platform, but it 
would be incompatible with the actual one. 

There are also Operating System compatibility details like GTK support. If we 
were porting to Windows, we would have to choose between a Unix-like environment 
like Cygwin [16] and use the already implemented wrapper or a new implementation 
of the native Win-32 API. 

In summary, Huemul could be ported to new platforms. It depends on how much 
the new platform differs from the supported one. But with more or less difficulty the 
task could be achieved. 

11   Current State of the System 

Huemul is nowadays usable but incomplete. It still needs Squeak to create the boot-
strapping image as Huemul's snapshot command sometimes fails. Development effort 
is focused in making Huemul standalone. This task includes to evolving the tools, and 
developing a good image format and a snapshot mechanism, designing a garbage col-
lector, general platform stabilization, etc. 

Huemul's home page is http://www.guillermomolina.com.ar/huemul. Huemul is 
downloadable either as sources by SVN or as a compressed archive that includes the 
image and the VM's binary. The latest archived version is 0.5b.  
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Fig 6.1. 

Huemul uses a standard MIT license [19], and reuses other developers' MIT li-
censed code. So it is free software, and it is available for general use. 

Figure 6.1 shows a screenshot of Huemul in action. At the upper-left there can be 
seen the Class Browser, this tool is used to modify the classes and methods. To the 
right there is an Application Launcher. This tool is used as a starting point, to launch 
the other tools, and to control Huemul's execution. Behind it, there is a Workspace. 
The Workspace is a place to execute code to compute something useful, and develop 
bits of a program. Under the Workspace there is a Debugger window. This tool is the 
main debugging tool, whenever something goes wrong, this is the place to start. And 
to the left of the Debugger, there is the command line. The command line is the start-
ing point of all other windows. Huemul can be used directly by entering commands 
there, without the use of the GUI. 

12   Future Work 

Many new technologies are still being considered. Future releases may include these 
technologies. 

 

JIT. Currently there is no dynamic optimization in Huemul. The performance 
achieved could be enhanced if we apply some useful optimizations like incremental 
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compiling, dynamic inlining, polymorphic inline caches,  type feedback, etc. We 
could start by adding some optimizations already available with Exupery. 

Garbage Collector. Huemul still lacks a good garbage collector (GC) . Different GC 
strategies are still being evaluated. A parallel garbage collector based on the “Mostly 
Parallel Garbage Collector” [12] seems to be the best choice, since this collector fo-
cuses on parallelization and scalability. And because there is a working plug-and-play 
library available from the authors of that work [7]. 

Image Format. Right now the image format is like a photograph of the running sys-
tem. With this approach we are obligated to have an image loader in the VM. Our 
image loader has to apply relocation patches to the image before it can be used. We 
are considering adopting a standard executable format like elf [6] instead of our pro-
prietary format. This would let us remove the loader from the VM, and make the  
Operating System do the job.   

VM Compiler. Huemul has a tiny VM, but it still needs another language and com-
piler to develop it, as it is written in C. We would like to implement an extension to 
the actual compiler, that would override the standard send mechanism used for normal 
Smalltalk code. We would use such a compiler to port the VM to Smalltalk and em-
bed it in the image. Leaving just an image bootstrapper in the executable. This 
mechanism would convert Huemul in a fully self-sustaining system. 

13   Conclusions 

This paper describes a new Smalltalk implementation focused on aggressive reusabil-
ity. We analyzed the sources for functionality duplication of other implementations 
and proposed a new type of VM that is at the same time fast and small. This VM only 
implements the procedures that can not be pushed up into the image, and can not be 
pulled down to the Operating System and its libraries. The main difference with other 
implementation is the total lack of an interpreter. This layer is implemented by  
compiling Smalltalk code to native code without an intermediate compilation to byte-
codes. The main drawback of this approach is the lack of automatic portability of the 
image, as it is bound to the host platform. There are also other parts of the VM that 
help reusability; like the use of native stack instead of Smalltalk contexts, the  
dynamic loading of libraries and functions, native threads, the GTK framework, etc. 
Overall, these techniques make Huemul integrate tightly with the platform and bring 
all the advantages that the platform provides to the Smalltalk world. 
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Abstract. This paper describes the development of an implementation
of Common Lisp with the peculiarity that it is bootstrappable neither
solely from itself, nor from some other language, but rather from a variety
of other Common Lisp implementations. We explain the motivation for
this bootstrap strategy, discuss some of the technical details involved in
achieving it, and attempt to assess the technical and social effects that it
has had on the development of the implementation and on its user and
developer community.

1 Introduction

The Lisp family of languages has a long history, being invented (or perhaps
‘discovered’) by John McCarthy in the late 1950s. Of the languages still in use
today, only Fortran is older – though of course both modern Fortran and modern
Lisp are worlds removed from the versions used in the 1950s. A wide range of
dialects of Lisp were developed and disseminated in the following two decades,
until in the 1980s moves towards consolidation between the various Lisp fami-
lies occurred. The two most popular dialects of Lisp at the time of writing are
Scheme and Common Lisp, both of which have international standards docu-
ments associated with them [1,2] (though in the case of Scheme there are also
more lightweight community-led processes which have largely superseded the
international standard [3,4]).

This paper is primarily concerned with implementation strategies for Common
Lisp, and how those strategies affect the ease with which development of the
implementations can occur. We do not address in this paper the implications
of the details for other environments, presenting instead a case study of the
social and technical effects observed in this single domain. In particular, we do
not address the issues involved in cross-compiling Common Lisp for a different
machine architecture, as these have been discussed elsewhere (see for example
[5] and references therein).

Current Common Lisp implementations can usually support both image-
oriented and source-oriented development. Image-oriented environments (for ex-
ample, Squeak Smalltalk [6]) have as their interchange format an image file or
memory dump containing all the objects present in the system, which can be
later restarted on the same or distinct hardware. By contrast, a source-oriented
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environment uses individual, human-readable files for recording information for
reconstructing the project under development; these files are processed by the
environment to convert their contents into material which can be executed.

It would be unusual to find a Common Lisp application programmer these
days working in an image-oriented manner; it is far more usual to work with
source code stored in files and loaded using compile-file, than to define func-
tions exclusively using the evaluator or read-eval-print loop and to store state
by saving memory images, though the functionality of saving images is retained
in contemporary Common Lisp implementations (despite not being part of stan-
dardized functionality) and is most often used as a deployment strategy.

Of course, Common Lisp application programmers are used to making in-
cremental modifications to their software; Lisp environments are renowned for
having the facilities to develop functions one at a time, coupled with the ability
to use the image’s introspective capabilities for finding information about callers
and callees of functions and where variables are bound, for providing views of
data structures (through an inspector or through more specialized browsers for
classes, generic functions and the like), as well as for rapid recompilation and
incorporation of modifications.

However, as image formats are not standardized, and indeed historically do
change between releases of Common Lisp implementations, the application pro-
grammer is used to verifying from time to time that their current sources compile
cleanly from scratch – that is, that no dependency on something which is only
present in the image has been introduced in the sources.1

In the sphere of Lisp implementations themselves, however, this picture is
reversed: it is somewhat unusual to find a Lisp implementation, written primarily
in Lisp, which does not have a flavour of this image-oriented development within
it. The typical build process in this case involves using a host lisp of the same
implementation (but an earlier version), then mutating it incrementally to the
point where it matches the new sources sufficiently to be able to compile those
new sources, and then dumping an image. The mutation is in general different
for each particular change at the source code level – many changes require no
mutation at all, while changes to compiler-internal data structures may require
very involved mutations: we give an example in Section 4.1.

This paper discusses Steel Bank Common Lisp (SBCL), a Common Lisp im-
plementation which is largely written in Lisp, while limiting and containing the
image-based incremental modification of its own self as part of its build process
to a strictly manageable level: the outcome of the build does not depend on the
state of the host lisp compiler. The rest of this paper is organized as follows:
in Section 2, we describe the history and current state of Steel Bank Common

1 A simple but real-world example of this comes from the abstraction of a syntactic
pattern into a macro which has uses before its definition, because the most expe-
dient place to put that definition was not in the first source file to be compiled
from scratch. SBCL has a number of source files with prefix early- (for example,
early-package.lisp and early-setf.lisp) for the purpose of holding definitions
which must be seen early in the build.

http://www.xach.com/clhs?q=compile-file
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Lisp; then in Section 3, we go into the detail of how SBCL is built, comparing
our approach with other Common Lisps. We discuss the benefits and drawbacks
of this build process in Section 4, and draw conclusions in Section 5.

2 Steel Bank Common Lisp

Although Steel Bank Common Lisp (SBCL) is a relatively new Common Lisp im-
plementation, it shares much code and a long development history with its clos-
est relative, Carnegie-Mellon University Common Lisp [7] (CMUCL). CMUCL
was a project funded by DARPA under CMU’s “Research on Parallel Comput-
ing” contract, and began life as SPICE Lisp. Under that contract, CMUCL was
developed continuously at Carnegie-Mellon University from the early 1980s un-
til funding was stopped in 1994; at that point, CMUCL support at CMU was
discontinued, but the project continues to this day, with a group of users and
developers collaborating over the Internet.

SBCL was announced as a CMUCL variant with a ‘clean’ bootstrap process,
in December 1999 by Bill Newman on the CMUCL developers’ mailing list [8].
Since then, it has been developed further, initially by Newman alone, then with
an increasing number of contributions from individuals, starting from the move
to public CVS hosting on SourceForge in September 2000. The number of con-
tributors has since risen significantly; at the time of writing, there are 23 people
with commit privileges to the master CVS repository, while over the course of
2007 code contributions from over 40 people were incorporated.

The system as of early 2008 contains approximately

– 90,000 lines of lisp code implementing the ‘standard library’, excluding the
Common Lisp Object System (CLOS);

– 60,000 lines of lisp code implementing the compiler (and related subsystems,
such as the debugger internals);

– between 10,000 and 20,000 lines of lisp code per architecture backend imple-
menting the code generators and low-level assembly routines;

– 20,000 lines of lisp code implementing CLOS;
– 20,000 lines of lisp code implementing contributed modules or ‘extras’;
– 35,000 lines of C and assembly code, for services such as signal handling and

garbage collection;
– 30,000 lines of shell and lisp code for regression tests.

It is perhaps worth discussing briefly why there is a substantial component
written in C and assembler: some 10% of the total. Partly this is because of
the large number of architecture/operating system pairs supported; each such
pair contributes some 200 lines of code implementing platform-specific operators
(such as finding the faulting address from within a memory fault handler func-
tion); additionally, each supported operating system (of which there are five)
contributes 2000 lines, and each architecture (of seven) 2500 lines. The Garbage
Collector is about 8000 lines of code, and is written in C for essentially pragmatic
reasons: when the system is unstable enough for the GC to require debugging,
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using an external debugger (such as the GNU debugger, gdb) removes some
uncertainty in the debugging process: and such external debuggers are better
tailored to debugging C than Lisp.

We discuss the technical details of SBCL’s build process in more detail in the
next section; to give a high-level overview, SBCL’s build achieves independence
from the host lisp used to build it by embedding an SBCL compiler within the
host, before using that embedded compiler to generate a fresh, standalone SBCL
image. These two compilers, embedded and standalone, are generated from the
same source code files; this works because we have effectively done the same as
is commonly described as idiomatic Common Lisp programming style: to write
a domain-specific language for solving one’s problem, then solving the problem
in that language – but in our case, the domain-specific language happens to be
Common Lisp itself.

3 The SBCL Build Process

3.1 Build Processes of Other Lisps

We discuss the build processes and implementation strategies of other contem-
porary Common Lisps, in order to put SBCL’s strategy in context. For more
general information about these Lisps, see a recent survey of implementors con-
ducted in late 2007 [9].

We can briefly summarize the implementation strategies of current Common
Lisp implementations by dividing them into two categories: those which have
significant portions implemented in languages other than Lisp, and those which
are primarily Lisp-based. (The key to the division is whether there is enough
implemented in the other language to implement an interpreter, or whether all
Lisp evaluation is written in Lisp).

– Other-language based:
• C implementation, C compiler: GCL, ECL (Kyoto CL derivatives)
• C implementation, bytecode compiler: GNU CLISP
• Java implementation, Java bytecode compiler: ABCL
• C++ implementation, native compiler: xcl

– Implemented primarily in Lisp:
• only buildable in themselves, using image-based techniques: Allegro Com-

mon Lisp2, LispWorks2, CMUCL, Scieneer CL2, Clozure CL;
• buildable in several Common Lisps: SBCL.

For the implementations where there is an evaluator in a non-Lisp language,
the bootstrapping strategy is straightforward: building enough of an environment
in that other language to be able to evaluate Lisp, and then build up the rest
through successive evaluation. Note that this build strategy does not necessarily
2 The closed-source nature of these implementations prevents the author from mak-

ing any authoritative statement, but anecdotal evidence suggests that placing these
implementations in this category is correct.
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involve very much code in the ‘other’ language (see for example Lisp5003, which
has 500 lines of highly-obfuscated C); however, for systems intended for real-
world usage, the figure is significantly higher: GNU clisp has 180,000 lines of ‘D’
– which is then preprocessed into C; gcl has 75,000 lines of C code implementing
the compiler core, along with another 1,000,000 lines of C code from libraries
for binary creation and accurate multiprecision arithmetic: binutils and gmp.

Part of our motivation for working on SBCL rather than other implementa-
tions is that we believe that Lisp is a good language for general programming,
including the writing of interpreters and compilers and for manipulating com-
plex data structures, and that therefore it would be a shame not to use it to the
full in the development of a Lisp implementation: but the determinism granted
by SBCL’s build procedure as described in this paper is also important.

3.2 Building SBCL Itself

The SBCL build process is not greatly dissimilar to the build process of com-
pilers such as gcc [10, Chapter 11]; there is an extra dimension to it, however,
thanks to the accumulation of state during a compilation and loading process,
which is not present in static C-like languages: this is the underlying reason for
having namespaces beginning sb! in the cross-compiler (corresponding to sb- in
a running SBCL); we discuss this further in Section 3.3. The following diagrams
illustrate the build process; in them, files either produced or used in the process
are represented as ellipses, while Lisp processes themselves are rectangles.

The first step (Figure 1) involves using the host compiler to compile and load
SBCL’s source files, which produces a cross-compiler (denoted by xc) running as
an application inside the host. This step also builds other applications, including
sb!fasl:genesis, which will be used later. It is then possible to introspect over
the definitions of the data structures for the target lisp, and produce a set of C
header files describing Lisp data structure layouts.

These C header files, along with the C source and assembly files, are then
used (Figure 2) to produce the sbcl executable itself. The executable is as yet
not useful; while it provides an interface to the operating system services, and
a garbage collector, it requires a compatible Lisp memory image (produced in
the next steps) to function. Additionally, a small C program is compiled and
executed, generating Lisp source code describing system constants and types.

Next, the cross-compiler version of compile-file is used to compile the SBCL
sources again, along with the generated Lisp source file from the previous stage
(Figure 3). This produces a set of object files (‘FASL files’ in Lisp terminology,
here given the filesystem extension .lisp-obj). Although in Figure 3 the host
and cross-compiler are displayed as though unchanged, in fact there are some fine
differences between the cross-compiler at the start and the end of this process: the
cross-compiler will have acquired new constant definitions (from the generated

3 Available at http://www.modeemi.fi/∼chery/lisp500/. Lisp500 is not intended to
be more than a ‘toy’ Common Lisp; its implementation is such that eval is written
in C.

http://www.xach.com/clhs?q=compile-file
http://www.modeemi.fi/~chery/lisp500/
http://www.xach.com/clhs?q=eval
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host
cl
sb-int
sb-pcl

cl:compile-file cl:load

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

src/code/
src/compiler/
src/assembly/

src/runtime/genesis/*.h

Fig. 1. The host-1 build stage

src/runtime/*.[chS]
src/runtime/genesis/*.h cc ld

src/runtime/sbcl

tools-for-build/
grovel-headers.c cc ld ./a.out

output/stuff-
groveled-from-
headers.lisp

Fig. 2. The target-1 build stage

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

sb!xc:compile-file

src/code/
src/compiler/
src/assembly/

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

obj/from-xc/**/*.lisp-obj

Fig. 3. The host-2 build stage

lisp file, for example). However, the functions and data structure definitions on
the host, including those of the cross-compiler application, are unchanged by
this process.

The next stage (Figure 4) simulates the act of loading the FASL files and
saving a memory image, using the genesis application. We cannot simply load
those FASL files using the standard Common Lisp load function, because load

http://www.xach.com/clhs?q=load
http://www.xach.com/clhs?q=load
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host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

sb!fasl:genesis

obj/from-xc/**/*.lisp-obj host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

output/cold-sbcl.core

Fig. 4. The genesis-2 build stage

uses the host compiler’s FASL file format, not SBCL’s format. Nor can we use
the load function of the target image, because that target image does not yet
exist: indeed, its creation is the purpose for wanting to load these FASL files in
the first place.

Instead, we effectively build up the memory image by pseudo-loading each
FASL file in the specified build order: we represent the memory areas of the
target lisp as vectors of bytes, and perform the actions that would occur on
loading the FASL file, not on the host lisp’s data structures but rather on the
representation of the appropriate memory area. There are actions that cannot be
simulated in this way, such as function calls to arbitrary target functions – these
actions are deferred until the initial function of the target image is run – but
in particular function definition can be performed, so that the initial function is
capable of calling other, named functions.

Once all of the FASL files have been processed in this way, the memory areas
are saved to file in the format expected by the sbcl binary created earlier,
producing a ‘cold core’; there is a special case for dumping symbols of the sb!xc
package, which are dumped as though they were in the cl package.

The sbcl binary is run with the ‘cold core’ as its memory image: this core has a
particular entry point or ‘toplevel’, which performs a sequence of actions to allow
the processing of Common Lisp code. For instance, in the genesis sequence, no
top-level forms from the FASL files have actually been run, because there is no
way that they can be run using only the host lisp’s facilities. Instead, they are
deferred to this time. There are many other similar kinds of fixups which need
to be performed at this time, and in a particular order; this ‘cold init’ phase
is probably the most fragile portion of the SBCL build currently, and it is also
the hardest to debug (because if it goes wrong, there will be no helpful Lisp
debugger).

Finally, after the ‘cold init’ phase, the packages can be renamed to their final
names (so that sb! prefixes are converted to sb-), and the specialized version of
Portable Common Loops (PCL) for SBCL compiled and loaded; finally, a new
memory image is saved as output/sbcl.core, and the build process is complete
(Figure 5).
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output/cold-sbcl.core

src/runtime/sbcl

‘cold init’

target
cl
sb!int

src/pcl/

‘warm’

target
cl
sb-int
sb-pcl

output/sbcl.core

Fig. 5. The target-2 build stage

3.3 Separation of Host and Target

During the SBCL build process, there needs to be a clear separation of the host
and target worlds. In particular, if the SBCL build host is another version of
SBCL, the build must neither use any properties of the host SBCL, nor mutate
any of its structures.

To a large extent, this is achieved through one simple mechanism: packages
which in a fully-built SBCL have prefix sb-, during the build have names be-
ginning sb! – so that, for example, the package named sb!kernel during the
build corresponds to the sb-kernel package in a running SBCL. This package
name transformation occurs very early during the initial ‘cold’ boot of the lisp
image dumped by the genesis phase of the build process.

The handling of the *features* variable is conceptually similar. The standard
facility for conditional compilation in Common Lisp (really conditional code in-
clusion, somewhat like the C preprocessor’s #ifdef construct) dispatches on the
host’s value of *features*, including or commenting out code based on feature
expressions following #+ and #- reader macros. The SBCL build provides anal-
ogous #!+ and #!- reader macros for conditional reading of forms based on the
target value of *features*, so that (for example) the cross-compiler can include
architecture-specific optimizations or operating system specific system calls.

There is a complication, however, for handling routines that will be part of the
common-lisp package in the target lisp: we clearly cannot overwrite any of the
host compiler’s functions or constants, but we need to be able to refer to target
versions of these: for instance, so that the cross-compiler can compile defmacro
forms. The solution there is to have a shadow common-lisp package named
sb!xc, which only exists during the build process: operators which are needed
for the build but which collide with common-lisp operators in the host lisp are
placed there, and genesis has a special case for dumping symbols from the sb!xc
package, so that the cold boot phase runs with all the necessary common-lisp
operators already present.

http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=defmacro
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To give a concrete example, the operator cl:defconstant, when evaluated
by the host compiler, will define a constant in the host’s world. The opera-
tor sb!xc:defconstant, when evaluated by the cross-compiler, will define a
constant in the cross-compiler; further, when a call to sb!xc:defconstant is
compiled by the cross-compiler, it will be as if cl:defconstant has been run,
once the compiled call has been ‘evaluated’ during the genesis and cold boot
phase.

As well as those simple special cases of host and target separation, there
are a couple of slightly more complicated cases that nevertheless need some
care. One is eval-when, which can cause confusion in even seasoned Common
Lisp programmers. The eval-when operator allows the programmer to spec-
ify that certain forms should be executed when the file containing the form is
file-compiled (:compile-toplevel) or when the resulting FASL file is loaded
(:load-toplevel), or both – as well as when in a normal execution context
(:execute, which is never active in the SBCL build process itself). In the con-
text of phase separation and maintainability, the eval-when operator may not
be the best solution [11], but it is available in conforming Common Lisps, so the
SBCL build process can rely on it.

Consider the following example fragment:

(eval-when (:compile-toplevel :load-toplevel)
(defun foo (x) (+ 7 x)))

Since the cross compiler cannot run any code of its own, for the :compile-
toplevel case itmust use cl:defun (i.e. the host’s defun) here, not sb!xc:defun.
However, for the :load-toplevel case, we are compiling a call that would eventu-
ally be executedby the target, so the cross-compiler’s version of themacroexpander
for defun must be used.

The other case revolves around make-load-form. The build process makes use
of make-load-form extensively, for dumping compiler structures into FASL files.
However, care must be taken here, because the host compiler’s implementation
of make-load-form-saving-slots is not necessarily compatible with the cross-
compiler’s – and yet the same code must be capable of dumping both compatibly
for the host, while building the cross-compiler, and compatibly with the target,
while building the target compiler. This is achieved by having a make-load-form
method which dispatches on the presence of the :sb-xc-host on the host’s lisp’s
*features* variable, which indicates which phase in the build is currently being
executed.

3.4 Lisp Library Differences

There are other non-portabilities in the SBCL build process that are addressed
at the time of writing to a greater or lesser extent.

Constant-folding and, potentially, type derivation in the cross-compiler will
interfere with correct operation if the host Lisp’s model of float subtypes
is not the same as the target’s. SBCL divides the float type into two sub-
types: single-float (the same as short-float) for IEEE single floats, and

http://www.xach.com/clhs?q=eval-when
http://www.xach.com/clhs?q=eval-when
http://www.xach.com/clhs?q=eval-when
http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=make-load-form-saving-slots
http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=float
http://www.xach.com/clhs?q=float
http://www.xach.com/clhs?q=single-float
http://www.xach.com/clhs?q=short-float
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double-float (the same as long-float) for IEEE doubles. Compiling from a
host lisp which had different interpretations of single-float and double-float
to SBCL’s would be challenging, though note that SBCL’s code is not sensitive
to the host lisp’s interpretation of short-float and long-float.

One observation remains: it is surprisingly difficult to write theoretically
portable code for handling a large block of memory. Common Lisp provides
the abstraction of a vector, of course, but the standard only specifies that the
maximum size of a vector offered by the implementation must be 1024 elements
or greater. While the author has not encountered a system where that limit is
quite so low, implementations with an array-total-size-limit of the order
of 224 (on a 32-bit implementation where vectors are represented in memory
with a header word consisting of an 8-bit type tag and 24 bits for the vector
length) prompted a rewrite of the genesis phase to use ‘big vectors’, so that an
in-memory data structure representing the bytes of the target lisp image (typ-
ically 20MB in size) could be built without falling foul of the array limit. The
current ‘big vector’ implementation, representing linearly-addressible space as a
vector of vectors of bytes, is in principle not sufficient, as the maximum space
portably representable with such a data structure is 1MB (though in practice
no implementation has an array-total-size-limit as low as 1024, and so our
vector-of-vectors implementation is sufficient).

4 Discussion

4.1 Advantages

The immediate benefit of a straightforwardly reproducible build process is that
no-one need learn the intricacies of the build process to contribute small, non-
invasive patches. To a large extent, the author believes that this single fact is
responsible for the current relative popularity of SBCL among Common Lisp
implementations, and perhaps has even contributed to the increase in interest
of Common Lisp as a whole.

Additionally, the straightforward build process, and in particular the clear
separation between the build host and the target, allows for a smoother path
for more invasive patches. As a simple example, there is no difficulty at all in
renumbering the tags for type information, which is useful to allow more efficient
assembly sequences for type checking.

In several cases the clear separation has resulted in bug fixes that were both
cleaner and more straightforward to develop when compared to the more image-
based Lisp implementations. For instance, there was a bug in both SBCL and its
parent CMUCL in the handling of accessors for structures when name clashes
occur through inheritance: a corner case to be sure, but one that was detected
and fixed in December 2002 (SBCL) and January 2003 (CMUCL), by adding
a slot to record inherited accessor information to the structure representing
descriptions of defstructs.

http://www.xach.com/clhs?q=double-float
http://www.xach.com/clhs?q=long-float
http://www.xach.com/clhs?q=single-float
http://www.xach.com/clhs?q=double-float
http://www.xach.com/clhs?q=short-float
http://www.xach.com/clhs?q=long-float
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=array-total-size-limit
http://www.xach.com/clhs?q=array-total-size-limit
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It is in dealing with this kind of circularity that the simplicity of SBCL’s build
truly wins. In the case of SBCL, the fix was simple to implement: the slot was
added to the sources, and then the sources were recompiled using the standard
build procedure. In the case of CMUCL, however, in addition to changing the
sources, two ‘bootfiles’ were necessary, and the system needed to be built at least
twice: once loading the first bootfile beforehand (and interactively choosing a
particular restart from an error condition); and once loading the second. The
fix for the bug, which was very simple conceptually, was developed for SBCL
by someone not in the development team; for CMUCL, it required an expert in
the CMUCL build process itself to implement the bootfiles, demonstrating the
principle that there can be a large impedance to contributions from newcomers.

Empirically, we can also say that SBCL as a whole, including its approach
towards buildability, supports a community of users and developers which spans
the gamut between experimentation with language and environment (examples
include modular arithmetic, sequences [12], generic specializers [13]) and indus-
trial use (as in ITA Software’s QPX and RES products [9]). It should of course
be noted that we cannot point to cause and effect here: there were all sorts
of other factors allowing the SBCL (and Common Lisp) community to grow
in number and scope, notably the development of a test suite for standardized
functionality [14] and success stories from other Lisp vendors (see references in
[9] for information current as of late 2007).

4.2 Downsides

The most obvious downside to the reworking of the build process described here
is that each build inherently takes twice as long as in simple image-based systems:
the compiler must effectively be built twice. These days, thanks to ubiquitous
fast processors, this problem is much less evident than when the project started
in 1999; the author remembers typical builds of upwards of an hour for SBCL,
where its close relative CMUCL took on the order of 10 minutes (there were
other factors for the more-than-doubling, including peak higher memory usage).
Over the years, as processors have become faster, available memory has become
greater, and SBCL’s compiler has been optimized, there is only a small difference
in build time4: and of course there is no need to think about how to build SBCL,
or whether some kind of bootstrap script is needed – it can simply be set off.

Although a working model of SBCL is built as the cross-compiler, this is an in-
complete model, and in particular it does not include CLOS (but it does include
some hand-rolled object systems, in particular for implementing subtypep).
SBCL’s implementation of CLOS is derived from the Portable Common Loops

4 On an Intel Pentium-M with clock speed 1.7GHz, building SBCL 1.0.16 using SBCL
1.0.15 took 541 seconds of user time, while building CMUCL 19d p2 (without any
extras such as CLX, the Motif bindings or Hemlock) with CMUCL 19d took 485
seconds of user time. Note that the CMUCL build involves three compilation phases:
given sources corresponding sufficiently closer to the CMUCL compilation host, some
of those phases may be unnecessary – but the default is to compile three times.

http://www.xach.com/clhs?q=subtypep
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[15] package, with many modifications to improve conformance with the descrip-
tion of the Metaobject Protocol for CLOS [16]. In particular, the implementation
of CLOS has inherent metacircularities, and representing this metacircularity in
a host-independent way has not yet been addressed. Allowing CLOS to be part
of the cross-compiler would probably simplify some portions of the logic within
SBCL’s compiler and type inferencer, at the possible cost of making the boot-
strapping procedure rather more complex.

5 Conclusions and Further Work

We believe that Common Lisp itself is well suited to the domain of Common
Lisp compilers, and as such it is an appropriate technique to use Common Lisp
as the implementation language for a Common Lisp implementation. We have
further shown that it is possible to avoid a circular dependency: SBCL is written
in Common Lisp, not in its own dialect.

We have presented evidence that this has some positive effects; the removal of
the cognitive overhead in working out whether any given change to the system
requires special measures to build allows both for more rapid development by
individuals and for an easier path for newcomers to get involved with the system
– a particularly critical requirement given the relative lack of popularity of Com-
mon Lisp these days, and the fact that the Common Lisp implementation market
is fragmented, with numerous proprietary and open implementations competing
for market share. Though no single instance of SBCL is self-sustaining, the sys-
tem consisting of the SBCL software, its users and its developers has an improved
self-sustainability thanks to the conceptual simplicity of the maintainable mod-
ification of the software itself.

One straightforward improvement to the self-sustainability of the system would
be a compilation mode for SBCL which would remove all non-deterministic ele-
ments from the FASL files produced by the cross-compiler (for example, the corre-
sponding source code pathnames, or a build timestamp); this would allow for more
straightforward testing of Common Lisp implementations which are currently not
capable of building the system, and determining whether the problem lies in those
implementations or an as-yet unidentified unportability in SBCL itself.
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Abstract. A reflective programming language provides means to render
explicit what is typically abstracted away in its language constructs in
an on-demand style. In the early 1980’s, Brian Smith introduced a gen-
eral recipe for building reflective programming languages with the notion
of procedural reflection. It is an excellent framework for understanding
and comparing various metaprogramming and reflective approaches, in-
cluding macro programming, first-class environments, first-class contin-
uations, metaobject protocols, aspect-oriented programming, and so on.
Unfortunately, the existing literature of Brian Smith’s original account
of procedural reflection is hard to understand: It is based on terminology
derived from philosophy rather than computer science, and takes con-
cepts for granted that are hard to reconstruct without intimate knowl-
edge of historical Lisp dialects from the 1960’s and 1970’s. We attempt
to untangle Smith’s original account of procedural reflection and make
it accessible to a new and wider audience. On the other hand, we then
use its terminological framework to analyze other metaprogramming and
reflective approaches, especially those that came afterwards.

1 Introduction

Programming languages make programming easier because they provide an ab-
stract model of computers. For example, a Lisp or Smalltalk programmer does
not think of computers in terms of clock cycles or transistors, but in terms
of a virtual machine that understands s-expressions, and performs evaluation
and function application, or understands class hierarchies, and performs mes-
sage sending and dynamic dispatch. The implementation of the particular pro-
gramming language then addresses the actual hardware: It is the interpreter or
compiler that translates the language to the machine level.

Programming languages do not only differ in the programming models they
provide (functional, object-oriented, logic-based, multi-paradigm, and so on),
but also in fine-grained design choices and general implementation strategies.
These differences involve abstractions that are implemented as explicit language
constructs, but also “hidden” concepts that completely abstract away from cer-
tain implementation details. For example, a language may or may not abstract
away memory management through automatic garbage collection, may or may
not support recursion, may or may not abstract away variable lookup through
lexical scoping, and so on. The implementation details of features like garbage
collection, recursion and lexical scoping are not explicitly mentioned in programs
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and are thus said to be absorbed by the language [1]. Some languages absorb less
and reveal more details about the internal workings of their implementation (the
interpreter, the compiler or ultimately the hardware) than others.

We know that all computational problems can be expressed in any Turing-
complete language, but absorption has consequences with regard to the way
we think about and express solutions for computational problems. While some
kinds of absorption are generally considered to have strong advantages, it is also
obvious that some hard problems are easier to solve when one does have con-
trol over the implementation details of a language. For example, declaring weak
references tells the otherwise invisible garbage collector to treat certain objects
specially, using the cut operator instructs Prolog to skip choices while otherwise
silently backtracking, and first-class continuations enable manipulating the oth-
erwise implicit control flow in Scheme. When designing a programming language,
choosing which parts of the implementation model are or are not absorbed is
about finding the right balance between generality and conciseness [2], and it is
hard to determine what is a good balance in the general case.

A reflective programming language provides means to render explicit what is
being absorbed in an on-demand style. To support this, it is equipped with a
model of its own implementation, and with constructs for explicitly manipulating
that implementation. This allows the programmer to change the very model of
the programming language from within itself! In a way, reflection strips away
a layer of abstraction, bringing the programmer one step closer to the actual
machine. However, there is no easy escape from the initially chosen programming
model and its general implementation strategy: For example, it is hard to turn an
object-oriented language into a logic language. Rather think of the programmer
being able to change the fine-grained details. For example, one can define versions
of an object-oriented language with single or multiple inheritance, with single
or multiple dispatch, with or without specific scoping rules, and so on. In the
literature, it is said that a reflective language is an entire region in the design
space of languages rather than a single, fixed language [3].

In order to support reflective programming, the implementation of the pro-
gramming language needs to provide a reflective architecture. In the beginning
of the 1980’s, Smith et al. introduced procedural reflection, which is such a re-
flective architecture that introduces the essential concepts for building reflective
programming languages. Since the introduction of procedural reflection, many
people have used, refined and extended these concepts for building their own re-
flective programming languages. As such, understanding procedural reflection is
essential for understanding and comparing various metaprogramming and reflec-
tive approaches, including macro programming, first-class environments, first-
class continuations, metaobject protocols, aspect-oriented programming, and so
on. Unfortunately, the existing literature of Smith’s original account of proce-
dural reflection is hard to understand: It is based on terminology derived from
philosophy rather than computer science, and takes concepts known in the Lisp
community in the 1960’s and 1970’s for granted that are hard to reconstruct
without intimate knowledge of historical Lisp dialects.
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In this paper, we report on our own attempt to untangle and reconstruct the
original account of procedural reflection. Our approach was to actually reim-
plement a new interpreter for 3-Lisp, using Common Lisp as a modern imple-
mentation language. In our work, we also build upon experiences and insights
that came after the introduction of procedural reflection in [1], and also add
some refinements based on our own insights. Additionally we use the concepts
introduced by procedural reflection to analyze various other metaprogramming
and reflective approaches, especially those that came after Smith’s conception
of procedural reflection.

2 Self Representation for a Programming Language

By introducing procedural reflection, Smith introduced a general framework for
adding reflective capabilities to programming languages. In order to turn a pro-
gramming language into a reflective version, one must extend the language with
a model of the same language’s implementation. That self representation must
be causally connected to the language’s implementation: When we manipulate
the self representation, this should be translated into a manipulation of the real
implementation. What parts of the implementation are possibly relevant to in-
clude in the model can by large be derived from mapping the non-reflective
version of the programming language to Smith’s theory of computation.

2.1 A Model of Computation

According to Smith [1], computation can be modeled as a relational mapping
between three distinct domains: a syntactic domain, an internal representational
domain (the structural field) and the “real world”. The syntactic domain consists
of program source code. The structural field consists of all runtime entities that
make up the language implementation. In extremis, this includes the electrons

Syntactic Domain Structural Field Real World

5.0

(+ 23 (+ 10 9))

(lambda (x)
(+ 1 x))

<float>

<function call>

<function call>

<float>

<closure>

'forty-two'

'five'

'increment
function'

Internalization

Normalization

Denotation

"john" <['j, 'o, 'h, 'n]>

Fig. 1. Smith’s theory of computation
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and molecules of the hardware on which the interpreter runs. However, for the
purpose of procedural reflection, the structural field typically consists of high-
level data structures for implementing the values native to the programming
language, such as numbers, characters, functions, sequences, strings, and so on.
The real world consists of natural objects and abstract concepts that program-
mers and users want to refer to in programs, but that are typically out of reach
of a computer.

Fig. 1 shows a graphical representation for computation as a mapping from
programs, to their internal representation, to their meaning in the real world.
The three labelled boxes represent each of the domains. The collection of arrows
depict the mapping. The figure is meant to represent a model for computation
rendered by a Lisp interpreter, written in C – hence the s-expressions as example
elements of the syntactic domain. The <type> notation is used to denote an
instance of a particular C type or struct. For example, the “number 5” is written
as “5.0” in the programming language. Internally, it is represented by a C value
of type float and it means, as to be expected, “number 5”.

Each mapping between two domains has a different name. Mapping a pro-
gram to its internal representation is called internalization, also typically called
parsing. The mapping from one element in the structural field to another one in
the structural field is called normalization. Normalization plays the role of eval-
uation and reduces an element in the structural field to its “simplest” form. For
example, the s-expression (+ 23 (+ 10 9)) is internalized to some structure
representing a “procedure call”. When that element is normalized, it is mapped
to 42 – or better: To the internal representation of “42”. The mapping from an in-
ternal representation to its meaning in the world is called denotation. In general,
we cannot implement an interpreter that performs denotation. This is rather
something only human beings can do. What real implementations do instead is
to mimic denotation, which is called externalization [4]. For example, Common
Lisp is built around the concept of “functions”, and Common Lisp programmers
do not want to be bothered by the internal implementation of functions as in-
stances of a C struct for closures. Thus, when a function is printed, something
like “<function:f>” is displayed. By limiting the kinds of operations available in
Common Lisp for manipulating closure values and making sure they are printed
in a way that does not reveal anything about their implementation, Common
Lisp provides programmers the illusion of “real” functions. Such absorption and
the provision of an “abstract” model of the hardware is the entire purpose of
programming languages. By adding reflection to the language, we (purposefully)
break that illusion.

2.2 Reflection

Reflection allows programmers to program as if at the level of the language’s
implementation. Smith distinguishes between two kinds of reflection. Structural
reflection is about reasoning and programming over the elements in the inter-
nal domain, i.e. about inspecting and changing the internal representation of a
program. On the other hand, procedural reflection, later also called behavioral
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reflection, is concerned with reasoning about the normalization of programs.
The former allows treating programs as regular data and as such enables them
to make structural changes to programs. The latter also provides access to the
execution context of a program, which can then be manipulated to influence the
normalization behavior of a program. Adding structural and procedural reflec-
tion to a programming language requires embedding a self representation of the
language in the language, which is essentially a model of its implementation.

In relation to Smith’s model of computation, the way to add structural reflec-
tion to any programming language is by extending the language with constructs
for denoting and manipulating elements in the internal domain. The parts of the
implementation that constitute the internal domain can be identified by looking
for the structures in the implementation that implement the possible outcomes
of internalization and normalization. So in other words, we should extend the
language with means to denote the internal representation of numbers, charac-
ters, procedures, and so forth. Adding behavioral reflection requires providing
means to influence the normalization process, e.g. by making it possible to call
the interpreter or compiler from within the language.

3 Embedding a Model of Lisp in Lisp

One of the most difficult things about reflection to deal with is the fact that
it “messes up” the way programmers think. It does so because reflection strips
away the abstract model offered by the programming language. When using
reflection, the programmer is thinking in terms of the language’s implementation,
and no longer in terms of the programming model behind the language. In a way,
learning about reflection is similarly shocking as it was finding out that Santa
Claus isn’t real, but that it is your parents who give you your presents. When you
first found out about this, you were very upset and you resented your parents for
putting up a charade like that. After a while, though, you came to realize that it
was actually nice of them to introduce you to the illusion of a Santa Claus, and
that it is in fact still nice. Once you know your parents are the ones giving the
presents, you can even influence them to make sure you get the gifts you really
want. Similarly, reflection allows you to influence the language implementation
to make sure you get the programming language you really want.

In what follows, we illustrate how to turn Lisp into a reflective variant. To be
more precise, we turn the “prototypical” Lisp or “ProtoLisp” into its reflective
variant. Here, ProtoLisp is what we like to call the subset of Lisp presented in
textbooks to learn about implementation strategies for Lisp [5].

3.1 The World in Terms of ProtoLisp (Externalization in ProtoLisp)

The ProtoLisp programmer thinks in terms of s-expressions, evaluation and pro-
cedure application. An s-expression constitutes a program to be evaluated by
the computer. The syntax of s-expressions is parenthesized prefix notation: S-
expressions look like lists of symbols. The first symbol designates an operator
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or procedure, while the rest designates the operands or arguments. For example,
the s-expression (+ 1 2) has an equivalent mathematical notation 1 + 2 and
evaluates to 3. An important procedure in ProtoLisp is lambda, which can be
used to create new procedures.1 It takes two arguments: a list, representing the
procedure’s arguments, and a body, an s-expression. For example, (lambda (x)
(+ 1 x)) creates a procedure that takes one argument x and adds 1 to it.

There are more kinds of objects we can talk about in ProtoLisp. The categories
of the kinds of such objects are the programming language’s types. ProtoLisp’s
types include numbers, truth values, characters, procedures, sequences, symbols
and pairs (a pair denotes a procedure call).2 The procedure type can be used to
get hold of the type of a particular object.

In reality, the interpreter does not know about “numbers” or “procedures” or
any of those other types. The programmer only thinks that what the interpreter
shows him is a number or a procedure, though in reality, it shows him something
completely different, like instances of classes implementing closures, arrays of
characters representing strings, and other bits and bytes. We only choose to
treat them as numbers and procedures and characters and so on. A language’s
types, the built-in operators, the way objects are printed, is what implements
externalization. Reflection provides a look at the actual implementation of those
objects. To know what exactly constitutes the implementation of such objects,
we have to delve into the implementation of the ProtoLisp interpreter.

3.2 Internalization in ProtoLisp

ProtoLisp is an interactive language, implemented in this paper in Common
Lisp using the Common Lisp Object System (CLOS). It consists of an endless
read-evaluate-print-loop (repl), which repeatedly asks the programmer to type
in an s-expression, performs evaluation of the s-expression and prints the re-
sult of the evaluation. The code for this is depicted in Fig. 2. In the code, we
use the terminology by Smith: so normalize and internalize instead of the more
traditional terms evaluate and parse. Note that the interpreter is implemented
in continuation-passing style, meaning the control-flow is implemented by ex-
plicitly passing around “continuations”. Continuations are implemented here as
functions that take one argument. The third argument passed to normalize
is a function that encodes the continuation of what needs to happen after an
s-expression is evaluated, namely printing the result and starting the loop again.

A program is initially just a string of characters. The ProtoLisp interpreter
needs to parse a program string to something structured before it can be manipu-
lated for evaluation. This structure is what comes out of the call to prompt&read
in Fig. 2 (the first argument to normalize), which calls internalize to create
that structure. From now on we refer to instances of those classes as internal
1 In ProtoLisp, we call lambda a procedure because we do not distinguish between

procedures and special forms, as is traditionally done in Lisp dialects.
2 In this paper, we use the term type in the tradition of dynamically typed languages,

where values are tagged with runtime type information. Various Lisp dialects differ
in the diversity of the types they provide.
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(defun read-normalize-print ()
(normalize (prompt&read) *global* (lambda (result!)

(prompt&reply result!)
(read-normalize-print))))

(defun prompt&read ()
(print ">")
(internalize (read)))

Fig. 2. The ProtoLisp read-eval-print loop or repl

Internalization Denotation

 handle
 pair
 atom
 rail
 closure
 boolean
 numeral

 internal structure
 procedure call
 variable
 sequence
 procedure
 truth value
 number

 '5
 (print . 1)
 x
 [1 2 3]
 n/a
 $T, $F
 0, 1, 2, 3, ...

notation CLOS class ProtoLisp type

Fig. 3. Mapping notations to internal structures

structures. Depending on what the program looks like, a different internal struc-
ture is created. For example, if what is read is a digit, then an instance of the
class numeral is created, if what is read is something that starts with a left-
brace ( and closes with a right brace ), then an instance of the class pair is
created, and so on. In ProtoLisp, there is a syntax specific for each of the lan-
guage’s types. The internalize function dispatches on that syntax and creates
instances of the appropriate classes.

Fig. 3 aligns all of the ProtoLisp types (third table) with examples showing
their notation (first table). The second table lists the CLOS classes to which
those notations internalize. Note that there is no specific syntax for denoting
procedures. They are created by lambda, as discussed in the previous section.

3.3 Normalization in ProtoLisp

The normalize function depicted in Fig. 4 is the heart of the ProtoLisp inter-
preter. It implements how to simplify an s-expression to its normal form, which
is something that is self-evaluating, like a number. The normalize function takes
three arguments, namely an s-expression, an environment and a continuation:

– The s-expression is the ProtoLisp program to be evaluated. It is an instance
of any of the classes listed in the second table of Fig. 3.

– The environment parameter is needed to keep track of the scope in which
normalize is evaluating an s-expression. Environments are instances of the
class Environment and map variables to bindings. There are two functions
defined for environments: binding takes an environment and an atom, and
returns the object bound to the atom in the given environment. bind takes an
environment, an atom and an internal structure, and creates a binding in the
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environment, mapping the atom to the internal structure. The normalize
function is initially called with a global environment, which is bound to the
variable *global* and provides bindings for all primitive procedures defined
in the language (like +).

– Since the interpreter is written in continuation-passing style, the control-
flow is explicitly managed by passing around continuations. Continuations
are implemented as Common Lisp functions that take one argument, which
must be an internal structure. As an example of a continuation, consider the
lambda form in the source code of the read-normalize-print function in

;structure = numeral | boolean | closure | rail | atom | pair | handle

;normalize: structure, environment, function -> structure

01. (defun normalize (exp env cont)
02. (cond ((normal-p exp) (funcall cont exp))
03. ((atom-p exp)
04. (funcall cont (binding exp env)))
05. ((rail-p exp)
06. (normalize-rail exp env cont))
07. ((pair-p exp)
08. (reduce (pcar exp) (pcdr exp) env cont))))

;normalize-rail: rail, environment, function -> rail

11. (defun normalize-rail (rail env cont)
12. (if (empty-p rail)
13. (funcall cont (rcons))
14. (normalize (first rail)
15. env
16. (lambda (first!)
17. (normalize-rail (rest rail)
18. env
19. (lambda (rest!)
20. (funcall cont (prep first! rest!))))))))

;reduce: atom, rail, environment, function -> structure

21. (defun reduce (proc args env cont)
22. (normalize proc env
23. (lambda (proc!)
24. (if (lambda-p proc!)
25. (reduce-lambda args env cont)
26. (normalize args env
27. (lambda (args!)
28. (if (primitive-p proc!)
29. (funcall cont (wrap (apply (unwrap proc!) (unwrap args!))))
30. (normalize (body proc!)
31. (bind-all (pattern proc!)
32. args! (environment proc!))
33. cont))))))))

;reduce-lambda: rail, environment, function -> closure

41. (defun reduce-lambda (args env cont)
42. (let ((argument-pattern (first args))
43. (body (second args)))
44. (funcall cont
45. (make-closure
46. :body body
47. :argument-pattern (make-rail :contents (unwrap argument-pattern))
48. :lexical-environment env))))

Fig. 4. The continuation-passing-style interpreter for ProtoLisp
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Fig. 2, which takes one argument result!, prints it on the screen and calls
itself. This function is the continuation for the call to normalize in Fig. 2,
which means that the function is called by the normalize function instead
of returning to the caller.3

The normalize function distinguishes between four cases, the branches of the
conditional form cond in Fig. 4. Depending on the type of the s-expression being
normalized, a different evaluation strategy is taken.

An s-expression in normal form (normal-p) is self-evaluating. This implies
that when normalizing it, it can simply be returned. This is shown in line 2
of Fig. 4, where the continuation of normalize is called with an s-expression
in normal form. Examples of self-evaluating s-expressions are instances of the
classes numeral and closure, which implement numbers and functions.

An atom, which denotes a variable (atom-p), is normalized by looking up its
binding in the environment with which normalize is called, and returning this
binding. Line 4 in Fig. 4 shows this: It displays a call to the continuation with
the result of a call to binding as an argument. The latter searches the binding
for the atom exp in the environment env.

A rail (rail-p) is normalized by normalizing all of its elements. Fig. 4 displays
the source code for normalize-rail, which does this. It shows that a new rail
is constructed out of the normalized elements of the original rail. empty-p is a
function that checks whether a given rail has zero elements. rcons creates a new
rail as an instance of the class rail. first and rest return the first element and
all the other elements in a rail respectively. prep prepends an internal structure
to a rail. So, for example, when one types [1 (+ 1 1) 3] in the repl, then [1
2 3] is displayed in return as the result of normalization.

A pair, denoting a procedure call (pair-p), is normalized by calling reduce4,
whose source code is also shown in Fig. 4. It is passed as arguments – besides the
environment and the continuation of the call to normalize – the name of the
procedure being called and the procedure call’s argument list. They are obtained
by calling the functions pcar and pcdr on the pair respectively (see line 8).

The source code of the reduce function, which is of course also written
in continuation-passing style, is listed in Fig. 4 as well. Through a call to
normalize, it looks up the binding for the procedure call’s name proc (an atom).
The continuation of that normalize call implements the rest of the reduce logic.
It gets called with an instance of the class closure, which implements proce-
dures (see below). If the latter closure represents the lambda procedure, checked
on line 24 using the predicate lambda-p, then reduce-lambda is called, other-
wise the rail of arguments is normalized, and depending on whether the closure
represents a primitive procedure or not, reduce proceeds appropriately.

In case the procedure being called is a primitive procedure, as checked with
primitive-p on line 28 in Fig. 4, a procedure call is interpreted by deferring it
3 We assume that our implementation language Common Lisp supports tail recursion.

Smith shows that this is ultimately not necessary, since all recursive calls are in tail
position in the final 3-Lisp interpreter, resulting in a simple state machine [4].

4 reduce is traditionally called apply.
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to the Common Lisp implementation. Using unwrap, the closure object bound
to proc! is translated to a Common Lisp function that implements the same
functionality. This function is called with the arguments of the procedure call
(bound to args) after mapping them to matching Common Lisp values. The
result of this call is returned after turning it into an equivalent internal structure
again by means of wrap, since the ProtoLisp interpreter is defined only for such
structures. The details of wrap and unwrap are discussed in a following section.

Finally, when the procedure being called is user-defined, reduce proceeds by
normalizing the procedure’s body with respect to the procedure’s environment,
extended with bindings for the procedure’s variables (see lines 30–32).

reduce-lambda, also listed in Fig. 4, takes as arguments the rail of arguments
of the lambda procedure call being normalized, an environment and a continua-
tion. It creates an instance of the class closure (see make-closure on line 45),
where the slots body, argument-pattern and lexical-environment are bound
to a body, a rail of variables and the environment passed to reduce-lambda re-
spectively. The body is what is obtained by selecting the second element in args,
while the argument pattern is obtained by selecting the first element from args.
For example, when reducing the procedure call denoted by (lambda (x) (+ x
1)), then upon calling reduce-lambda, args will be bound to the rail denoted
by [(x) (+ x 1)], body will be bound to the rail denoted by [(+ x 1)] and
argument-pattern to [x].

3.4 Structural Reflection in ProtoLisp

Knowing the implementation of ProtoLisp, we are able to extend the language
with reflection. With reflection we should be able to program at the level of the
ProtoLisp implementation by writing ProtoLisp programs. To this end, the Pro-
toLisp language needs to be extended in such a way that it provides the illusion
as if the implementation were written in ProtoLisp itself (and not in Common
Lisp). In this section, we discuss how to extend ProtoLisp with structural re-
flection, while the next section discusses adding procedural reflection. ProtoLisp
extended with structural reflection is dubbed 2-Lisp by Smith.

Adding structural reflection requires two extensions: Firstly, we need to extend
the ProtoLisp language with the ADTs that make up the ProtoLisp implemen-
tation. Secondly, we also need a way to get hold of the internal structure of a
ProtoLisp value. The ProtoLisp implementation consists of a number of CLOS
classes implementing the ProtoLisp types, and Common Lisp functions to ma-
nipulate instances of these classes. The classes are listed in the second table of
Fig. 3 and the various functions, such as normalize, reduce, pcar, binding
and so on, are discussed in the previous section. For example, the CLOS class
pair and the functions pair-p, pcar and pcdr implement an ADT for repre-
senting procedure calls that needs to be added to the ProtoLisp language as a
corresponding ProtoLisp type and corresponding ProtoLisp procedures.

Similarly to adding a pair type and procedures that work for pairs, we extend
ProtoLisp with types and procedures that mirror the CLOS classes implementing
the rest of the ProtoLisp types, like numbers, characters, procedures and so on.
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Some of the implementation functions we need to port to ProtoLisp require
types of arguments the ProtoLisp programmer normally does not deal with. The
normalize function, for example, takes an environment parameter. We need to
add types and procedures to ProtoLisp for these classes as well.5

We also add ’ to ProtoLisp, which is syntax for denoting the internal structure
of an s-expression that is created when the s-expression is internalized.6 For
example, ’(+ 1 1) denotes the instance of the class pair that is obtained when
internalizing (+ 1 1). The result can be used as a pair: For example, (pcar ’(+
1 1)) returns ’+ and (pcdr ’(+ 1 1)) returns ’[1 1].

’ allows getting hold only of internal structures of values with corresponding
syntax. So for example, ’ does not allow accessing the internal structure of a
procedure, because a procedure cannot be created via internalization alone (see
Fig. 3). We add the procedure up to ProtoLisp that normalizes its argument
and then returns its internal structure. Thus typing in (up (lambda (x) (+ 1
x))) will return a closure. The down procedure is added to ProtoLisp to turn an
internal structure obtained via ’ or up into a ProtoLisp value. E.g. (down ’3)
returns the “number” 3.

We can now, for example, define a procedure that prints a pair in infix nota-
tion. The definition is shown in the following session with the repl:

> (set print-infix (lambda (structure)
(if (pair-p structure)

(begin
(print "(")
(print-infix (1st (pcdr structure)))
(print (pcar structure))
(for-each print-infix (rest (pcdr structure)))
(print ")"))

(print (down structure)))))
<procedure:print-infix>
> (print-infix ’(+ 1 1))
(1 + 1)

The print-infix procedure checks whether its argument is a pair. If it is a pair,
the first argument to the procedure call is printed, followed by the procedure’s
name and the rest of the arguments. Otherwise, it is just printed.

Apart from inspecting internal structures, we can also modify them. For ex-
ample, the following code shows how to add simple before advice to closures.

> (set advise-before
(lambda (closure advice)

(set-body closure (pcons ’begin (rcons advice (body closure))))))
> (set foo (lambda (x) (+ x x)))
> (foo 5)
10
> (advise-before (up foo) ’(print "foo called"))
> (foo 5)
foo called
10

5 A complete listing of these procedures is beyond the scope of this paper. The inter-
ested reader is referred to the original 3-Lisp reference manual [4].

6 ’ is called “handle”, in contrast to Common Lisp’s and Scheme’s “quote”, also
abbreviated as ’.
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The advise-before procedure changes the body of a closure to a sequence that
first executes a piece of advice and then the original closure body.

3.5 Procedural Reflection in ProtoLisp

As a final extension we add procedural reflection to ProtoLisp. This extension
is dubbed 3-Lisp by Smith. The goal of procedural reflection is to allow the
programmer to influence the normalization process. To this end, ProtoLisp is
extended with reflective lambdas to access a program’s execution context, that
is the interpreter’s temporary state, which consists of the expression, the environ-
ment and the continuation at a particular normalization step. A reflective lambda
looks like a regular procedure, with the exception that the length of its argument
list is fixed: (lambda-reflect (exp env cont) (cont (down (1st exp)))).
A reflective lambda has three parameters. When a reflective lambda call is re-
solved, they are bound to the expression, the environment and the continuation
at that normalization step.

As a first example, consider implementing a when construct. This construct
is similar to if, but when has only one consequential branch. The code below
shows how to implement it in 3-Lisp.
(set when (lambda-reflect (exp env cont)

(normalize (cons ’if (up [ (down (1st exp))
(down (2nd exp))
$F ]))

env cont)))

when is defined as a reflective lambda. When the interpreter normalizes a pair
with when as procedure name, it transforms the pair into an if pair and nor-
malizes that one instead. The body of the when construct consists of a call to
normalize. The first argument is the if pair that is constructed out of the
when pair, the second and the third argument are just the same environment
and continuation for normalizing the when pair. For example, the following two
expressions are equivalent:
(when (= (mod nr 1000) 0)

(print "Congratulations! You win a prize."))

(if (= (mod nr 1000) 0)
(print "Congratulations! You win a prize.")
$F)

As a second example, consider one wishes to implement a search procedure. It
takes as arguments a test and a list of elements, and returns the first occurrence
in the list that satisfies the test. For example:
>(search number-p [ ’licensed 2 ’kill ])
2

A procedure like search can easily be implemented, but consider that in doing
so, we want to reuse the library procedure for-each, which applies a given
procedure to each element in a given list:

(set for-each (lambda (f lis)
(when (not (empty lis))

(begin (f (1st lis)) (for-each f (rest lis))))))
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The code below shows an implementation of search in terms of for-each. The
trick is to implement search as a reflective lambda: We call for-each with the
test passed to search, and when this test succeeds, it calls the continuation
cont. This is the continuation of normalizing the search pair: As such, we jump
out of the for-each loop as soon as an element satisfying the test is found.

(set search (lambda-reflect (exp env cont)
(normalize (2nd exp) env

(lambda (list!)
(for-each (lambda (el)

(when ((down (binding (1st exp) env)) el)
(cont el)))

(down list!))))))

3.6 Implementing Reflection

Meta types and procedures. Adding reflection to ProtoLisp requires extend-
ing the language with types and procedures that mirror the ADTs making up its
implementation. In our implementation of ProtoLisp, the latter ADTs are imple-
mented using CLOS classes and functions. For the better part, porting them to
ProtoLisp is a matter of extending the language with new primitive procedures
and types that simply wrap the corresponding CLOS classes and functions.

For example, in Fig. 5 we list definition skeletons of the class pair and its
functions pcar and pcdr. The code also shows how we extend ProtoLisp’s global
environment with a definition for the ProtoLisp procedure pcar. The latter def-
inition is implemented as a closure tagged “primitive”, with a reference to the
Common Lisp function pcar as its body. So when the procedure pcar is called
in ProtoLisp, the interpreter recognizes it as a “primitive” closure object, defers
the call to the Common Lisp implementation, and ultimately calls the Common
Lisp function stored in the closure object.

Wrapping and unwrapping. Recall line 29 of the reduce function in Fig. 4,
which handles calls to primitive procedures: A Common Lisp function is fetched
from the primitive closure object and then called with the provided arguments.
However, it is necessary that these arguments are first mapped onto “equivalent”
Common Lisp values by means of unwrap. For example, given an instance of the
class numeral, unwrap returns the equivalent Common Lisp number.

When there is a one-to-one mapping between simple Common Lisp and Pro-
toLisp values, like between ProtoLisp numbers and Common Lisp numbers, the

(defclass pair (handle) ...)
(defun pcar (p) ...)
(defun pcdr (p) ...)

(defvar *global* (make-environment))

(bind *global* (make-atom :name (quote pcar))
(make-closure :ctype *primitive-tag*

:body (function pcar)
:lexical-environment *global*))

Fig. 5. Extending ProtoLisp with procedures mirroring the implementation functions
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(defmethod unwrap ((closure closure))
(cond ((primitive-p closure) (body closure))

((reflective-p closure)
(make-function :closure closure

:lambda (lambda (&rest args)
(error "Cannot call reflective closure from CL."))))

(t
(make-function :closure closure

:lambda (lambda (args)
(reduce closure

(make-rail :contents (list args))
*global*
(lambda (result!)

(prompt&reply result!)
(read-normalize-print))))))))

Fig. 6. Unwrapping closure objects to Common Lisp functions

implementation of unwrap is straightforward. Unwrapping a closure which is
tagged “primitive” is also straightforward: In this case, unwrap simply returns
the Common Lisp function stored as the closure’s body. Unwrapping other clo-
sures is more complicated, because their bodies contain ProtoLisp source code
that Common Lisp functions cannot directly deal with, so they need to be han-
dled specially when Common Lisp code wants to call them directly. Therefore,
such closures are unwrapped by creating a special function object, which stores
a reference to the original closure and a Common Lisp function handling it (see
Fig. 6). Common Lisp code that wants to call such function objects needs to
invoke the stored function instead.7 What special action is performed by such
a function depends on whether the original closure is tagged as “non-reflective”
or “reflective”.

When unwrap is called with a “non-reflective” closure, we can map it to a
Common Lisp function that simply invokes the ProtoLisp interpreter by call-
ing reduce with the closure and the arguments received by that Common Lisp
function. We also need to pass an appropriate environment and continuation to
reduce. Since the arguments passed to the unwrapped procedure are already
normalized, it does not really matter which environment to pass, so passing
the global environment here is as good as any other choice. We can answer the
question which continuation to pass by making the following observation: In our
implementation of ProtoLisp, the only higher-order primitive procedures that
take other procedures as arguments and eventually call them are normalize and
reduce, which are the two main procedures of the interpreter and receive proce-
dures as their continuation parameters. See, for example, the call to normalize
in the definition of search in the previous section, which receives a non-reflective
ProtoLisp procedure as a continuation. These continuation procedures are ex-
pected to call other continuations, which will ultimately end up in displaying a
result in the repl and waiting for more s-expressions to evaluate, because the repl
is where any evaluation originates from. However, to ensure that the repl is not
accidentally exited by continuation procedures which simply return a value – for

7 In our implementation, we have used funcallable objects, as provided by CLOS [3],
to avoid having to update all the places in the code where functions are called.
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example when calling (normalize ’(+ 1 1) global (lambda (res) res)) –
we pass a “fallback” continuation to reduce that simply ends up in the repl as
well (see Fig. 6).8

We stress, however, that unwrapping “non-reflective” closures in this way is
based on the assumption that the only higher-order primitive procedures which
call their procedure arguments are indeed normalize and reduce. If we want
to provide other higher-order procedures as primitives, like for example mapcar,
we need to pass other environments and continuations in unwrap as special
cases. Fortunately, this is not necessary because such higher-order procedures
can always also be implemented in ProtoLisp itself.9

As a final case in unwrap, we need to consider how to map closures tagged as
“reflective” onto something appropriate in Common Lisp. However, there is no
way we can map a reflective closure to a Common Lisp function with the same
behavior because it would require that there are already similar procedurally
reflective capabilities available in Common Lisp itself, which is not the case.
Therefore, we just ensure that calling an unwrapped reflective closure signals
an error. We can still pass reflective procedures as arguments to primitive Pro-
toLisp procedures, but only to eventually receive them back in ProtoLisp code
again, where they have well-defined semantics. Since normalize and reduce are
the only higher-order primitive procedures in ProtoLisp that actually call their
procedure parameters, this is no big harm: We consider the possibility to reflect
on the program text, the environment and the continuation at some arbitrary
implementation-dependent place in the interpreter to be highly questionable.10

The inverse of the unwrap function is the wrap function, which maps a Com-
mon Lisp value to the corresponding ProtoLisp value (an internal structure).
The wrap function is used to turn the result of interpreting a primitive proce-
dure into a proper internal structure (see line 29 in Fig. 4). For example, given
a Common Lisp number, wrap returns an instance of the class numeral. When
passed a Common Lisp list, wrap returns a rail object. Given a Common Lisp
function, wrap returns a closure object which is tagged “primitive”. Given a
function object wrapping a closure, unwrap returns the closure. Similarly wrap
maps other Common Lisp values to appropriate internal structures.

Up, down & ’. As discussed in the section on structural reflection, ProtoLisp
is extended with ’, up and down for denoting internal structures. The proce-
dure up returns the internal structure of its argument, and is implemented as
a primitive procedure (see above) that calls the function wrap. The procedure
down, which returns the ProtoLisp value matching the given internal structure, is

8 If ProtoLisp is not used as a repl, but for example as an extension language inside
other applications, we have to use other “fallback” continuations here, which would
simply return the value to the original call site.

9 Primitive higher-order procedures may be interesting for efficiency reasons, though.
10 Note, however, that passing reflective procedures to the underlying implementation

can be supported by a “tower” of interpreters, and is actually one motivation for the
notion of reflective towers, which we discuss in the next section.
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(defun reduce-reflective (proc! args env cont)
(let ((non-reflective-closure (de-reflect proc!)))

(normalize (body non-reflective-closure)
(bind-all (lexical-environment non-reflective-closure)

(argument-pattern non-reflective-closure)
(make-rail :contents (list args env cont)))

(lambda (result!)
(prompt&reply result!)
(read-normalize-print)))))

Fig. 7. Interpreting calls to lambda-reflect

implemented as a primitive procedure that calls the function unwrap. ’ is syntax
added for returning the result of internalizing a ProtoLisp s-expression.

wrap and unwrap also work with instances of the class handle. Handle objects
“wrap” structures that are already internal, by just storing references to the
wrapped objects. If wrap receives an internal structure, it just wraps it in a
handle object. If unwrap receives an instance of the class handle, it returns
whatever the handle object holds.

Lambda-reflect. We also extend ProtoLisp with lambda-reflect to render
the temporary state of the interpreter explicit. As discussed, lambda-reflect
resembles lambda: When a call to lambda-reflect is interpreted, a closure is
created that is tagged “reflective”. When a call to a reflective procedure is in-
terpreted, it is turned into an equivalent non-reflective procedure which is called
instead. Furthermore, that procedure is passed the s-expression, the environ-
ment and the continuation with which the interpreter was parameterized when
interpreting the reflective procedure call.

In the implementation, we extend reduce with a case for recognizing reflec-
tive procedure calls and passing them on to reduce-reflective, whose code is
shown in Fig. 7. The function de-reflect turns a reflective closure into a reg-
ular closure by just changing its tag from “reflective” to “non-reflective”. Apart
from that, it has the same argument pattern, the same lexical environment and
the same body as the original reflective closure. The procedure bind-all ex-
tends the lexical environment of the closure by mapping its argument pattern to
the (unevaluated) arguments, the environment, and the continuation with which
reduce-reflective is called. Finally, the call to normalize triggers evaluating
the body of the closure in terms of the extended environment. The continuation
passed to normalize is the repl’s continuation from Fig. 2. When the body of
the reflective procedure contains a call to the continuation it receives as an ar-
gument, then the continuation in Fig. 7 will actually never be called. However
when the body of the reflective procedure does not call its continuation, then
the repl continuation will be (implicitly) called. Again, this is to avoid that the
repl is accidentally exited (like when unwrapping non-reflective closures).

3.7 The Tower Model

One of the most debated ideas of Smith’s account on reflection is the tower
model. In this model, 3-Lisp is implemented as an infinite stack of meta circular
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interpreters running one another. This solves some conceptual and technical
problems that arise when implementing procedural reflection in 3-Lisp. One such
problem is the following: Consider a reflective lambda where the continuation
passed to it is ultimately not called. In a naive implementation of 3-Lisp, eval-
uating a call to such a reflective lambda would result in exiting the 3-Lisp repl
and falling back to the implementation level, since the passed continuation in-
cludes the continuation of the ProtoLisp repl. Generally speaking, this is not
the desired functionality. Using an interpreter that implements the tower model,
calling a reflective lambda can be resolved by the interpreter that is running the
repl the programmer was interacting with at the time of the call. The only way
the programmer will get back to the original interpreter is when the continuation
is called inside the reflective lambda’s body. When the continuation is not called,
then the programmer just stays in the upper interpreter. This is referred to as
“being stuck” at a meta level [4]. As such there is no danger the programmer
falls back to the implementation level [6].

Problems like those can occur when there is reflective overlap, i.e. when a re-
flective language construct renders some part of the implementation explicit, but
also relies on it [2]. In our example, reflective lambdas render the continuation
explicit, but when it is not called inside its body, then the entire interpreta-
tion process is stopped. Tower models are generally believed to solve problems
introduced by reflective overlap. However, they are not the only solution. The
Scheme language, for example, is not designed as a tower, and though it intro-
duces call/cc to capture a continuation, not calling it will not result in exiting
Scheme, but it will just be implicitly called, no matter what. Our implementation
behaves similar in that respect.

3.8 Summary – A Recipe for Reflection

In the previous sections, we extended ProtoLisp with reflection, which makes
it possible to program at the level of the ProtoLisp implementation by writing
ProtoLisp programs. The steps we took for adding reflection to ProtoLisp can
be synthesized to a recipe for adding reflection to any programming language.

There are two parts to implementing structural reflection. First of all, one
needs to identify the ADTs in the implementation that are used for representing
programs, and expose them in the language itself. Secondly, one needs to equip
the language with a mechanism to turn programs into first-class entities. Iden-
tifying which ADTs are potential canditates for structural reflection is done by
looking at the possible outcomes of internalization (parsing) and normalization
(evaluation). Note that in porting the ADTs, we need to make it appear as if
they were implemented in the language itself. For adding structural reflection to
ProtoLisp, this means adding new primitive types and procedures wrapping the
ADTs that implement characters, numbers, procedures, and so on. The proce-
dure up and the ’ syntax enable getting hold of the internal representations of
programs. The procedure down turns programs into regular values again. Such
mechanisms are implemented by means of a wrap/unwrap mechanism that tags
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internal structures in a way that ensures that the programmer can interface them
using the wrapped implementation procedures.

Procedural reflection is implemented by adding mechanisms that allow the
programmer to influence the normalization of a program at well-defined steps.
This includes pausing the normalization, inspecting and changing the processor
state at that time, and continuing the normalization. In ProtoLisp, we added
lambda-reflect, which allows defining reflective procedures. A reflective pro-
cedure is passed the state of the processor (an expression, an environment and
a continuation), which can be manipulated as regular data inside its body. To
proceed with the computation, the programmer needs to set the interpreter state
by calling the normalize procedure. In our implementation, lambda-reflect is
implemented as a special case in the interpreter, and normalize as a primitive
procedure that calls its counterpart in the actual implementation.

In the next section, we give an overview of some reflective programming lan-
guages, including both historical and contemporary approaches. Such approaches
are all more or less compatible with the recipe outlined above.

4 Related Work

Historical overview. Reflective facilities were already part of Lisp before
Smith introduced the concept of procedural reflection. Lisp 1.5 [7] provides a
quote mechanism that allows constructing Lisp programs on the fly at runtime.
For example, the Lisp 1.5 expression (let ((x 1)) (apply ’(lambda (y) (+
x y)) (list 2))) returns 3: A list whose first element is the symbol lambda is
interpreted as a function, and since Lisp 1.5 is a dynamically scoped Lisp dialect,
the variable references see the dynamic bindings of the respective variables even
in the code constructed on the fly. (The quoted lambda expression in the exam-
ple may as well be the result of a computation.) This ability to construct and
execute code on the fly corresponds to Smith’s notion of structural reflection,
where procedures can be constructed and manipulated via up and down. Lisp
1.5 also provides the ingredients of procedural reflection: An fexpr is a function
that gets unevaluated arguments passed as program text, and it is possible to
define fexprs as user programs. The alist provides access to the environment
mapping variables to values,11 and the “push down list” is the call stack (con-
tinuation) that can also be accessed from within Lisp programs. Taken together,
these features correspond to the notion of reflective procedures in 3-Lisp. For
example, such reflective features were used to introduce the concept of advice [8].

Unfortunately, dynamic scoping is problematic when it is the default semantics
for Lisp. Especially it leads to the so-called “upward” and “downard funarg prob-
lems” [9]. While they can be solved by dynamic closures and spaghetti stacks to
a certain degree, only the introduction of lexical closures in Scheme fully solved
all aspects of the underlying issues [10]. Lexical closures got picked up in Com-
mon Lisp and most other Lisp dialects thereafter. However, lexical closures make
some of the aforementioned reflective features of Lisp 1.5 less straightforward to
11 In Lisp 1.5, only one such environment exists.
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integrate as well. 3-Lisp can be regarded as a reconceptualization of such reflective
facilities in the framework of a lexically scoped Lisp dialect.

Current Lisp dialects, among which Scheme and Common Lisp are the most
widely used ones, typically provide only restricted subsets of structural reflec-
tion: Scheme’s eval and Common Lisp’s eval and compile can be used to turn
a quoted lambda expression into a function (similar to down), but they can-
not be enclosed in arbitrary lexical environments, only in global or statically
predefined environments. There is also typically no construct corresponding to
up available that would allow retrieving the original definition of a function. In
terms of procedural reflection, neither Scheme nor Common Lisp allow defining
functions that receive unevaluated arguments as program text, neither Scheme
nor Common Lisp specify operators for reifying lexical environments, and only
Scheme provides call/cc for reifying the current continuation. Macros were in-
troduced into Lisp 1.5 in the 1960’s [11], and are considered to be an acceptable
and generally preferrable subset of reflecting on source code [12]. The difference
in that regard to reflective procedures, fexpr, and so on, is that macros cannot
be passed around as first-class values and are typically restricted from access-
ing runtime values during macro expansion. This allows compiling them away
before execution in compiled systems, as is mandated for example by current
Scheme and ANSI Common Lisp specifications [13,14]. Useful applications of
first-class lexical environments in Scheme have been described in the literature
[15,16], but the only Scheme implementation that seems to fully support first-
class environments at the time of writing this paper is Guile, and the only Lisp
implementation that seems to do so is clisp in interpreted mode.12

Wand and Friedman were the first to follow up on Smith’s ideas, and in
their research they concluded that the tower model unnecessarily introduces ex-
tra complexity to reflective programming. One of their first results is Brown, a
reflective variant of Scheme, which shows that implementing procedural reflec-
tion does not require a tower architecture [17]. In their explanations, Wand and
Friedman introduced the now widely used term reification, which is the process
of turning implementation structures into first class representations. However,
they differ from 3-Lisp by renouncing an explicit up/down mechanism. Brown in-
stead relies on Scheme’s quoting facilities as a “reification” mechanism, and the
up/down mechanism is dismissed as a “philosophical concern”. However, as we
discussed in Section 3.4, this mechanism is necessary for being able to denote the
internal representation of program values that cannot be identified by a string of
source text alone. Hence, because the up/down mechanism is missing, Brown’s
reification mechanism is restricted: It is for example impossible in Brown to get
hold of a closure. The contribution in this paper is the integration of an explicit
up/down mechanism with a tower-less implementation of 3-Lisp, and in doing
so, we introduced a correct semantics for wrapping and unwrapping reflective
functions (see Section 3.6).

12 See http://www.gnu.org/software/guile/guile.html and http://clisp.cons.org/. Some
other Scheme implementations as well as the OpenLisp implementation of ISLISP
claim to support first-class environments as well, but failed in some of our tests.
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While solving some problems, the tower also introduces new problems. Sup-
pose, for example, that the programmer modifies the normalize procedure so
that its calls are logged. If the normalize procedure is identical for all of the
interpreters in the tower, this implies that each call to normalize produces an
infinite number of logs. To deal with this, the Blond language, based on 3-Lisp, is
implemented as a tower where each interpreter (potentially) has a separate envi-
ronment [18]. Finally, Asai et al. subsequently proposed a compilation framework
based on partial evaluation for implementing the tower model efficiently [19].

Analysis of reflective programming models. There exist a great deal of
programming languages offering reflective facilities. Depending on the kinds of
reflective facilities they offer, and how these are implemented and used, we can
classify these facilities as being a variant of either 2-Lisp or 3-Lisp. As we dis-
cussed previously, 2-Lisp offers the programmer structural reflection, while 3-Lisp
grants procedural reflection. With structural reflection, it is possible to manipu-
late the internal representation of programs as if these were regular data. Using
structural reflection, the programmer can make structural changes to programs,
e.g. inline the code for specific function calls in a program or extend the body
of a closure with code for caching. What is important to note is that structural
changes to programs like these can be done without executing the program. As
such, compilation techniques could be employed to implement structural reflec-
tion, which is in general believed to be more efficient than a dynamic implemen-
tation, as is required for implementing certain kinds of procedural reflection.

3-Lisp extends 2-Lisp by offering the programmer access to the execution
context of a program. In 3-Lisp this execution context includes an environment
and a continuation. This allows, for example, implementing one’s own language
constructs for exception handling or a module system as a 3-Lisp program. The
execution context of a program is available only during program execution, and
this requires an implementation that operates at runtime. In what follows, we
give an overview of existing reflective programming languages. We briefly discuss
their model and whether they offer structural or procedural reflection. We also
investigate if the underlying model makes any explicit assumptions that exclude
procedural reflection, e.g. for efficiency reasons.

The CLOS Metaobject Protocol (MOP) is a specification of how major build-
ing blocks of the Common Lisp Object System are implemented in terms of
itself. It thus provides hooks to modify CLOS semantics by defining methods
on subclasses of standard metaclasses. Such meta-level methods get invoked by
conforming CLOS implementations, for example during the construction of class
and generic function objects, and during slot access and method dispatch. The
CLOS MOP is thus a reflective architecture, and is based on the model of proce-
dural reflection in the sense that the hooks get triggered at runtime, while these
aspects of a CLOS implementation are actually performed. As such, user-defined
meta-level methods can make their results depend on runtime values. The CLOS
MOP itself does not provide first-class representations of the execution context
(like the current environment or the current continuation), but these could in
principle be provided as orthogonal features. Later metaobject protocols tried to
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push the boundaries closer to structural reflection by computing more and more
aspects of the object system before they get used, leading over hybrid systems
like Tiny CLOS, towards load-time [20] and compile-time metaobject protocols
[21], where all aspects are computed before they are ever used. At closer inspec-
tion, one can notice that the CLOS MOP is already a hybrid system, although
with an emphasis on procedural elements.

The CLOS MOP can be understood as a combination of procedural reflec-
tion as in 3-Lisp together with Smalltalk’s approach to object-oriented program-
ming, where everything is an instance of a class, including classes themselves.
Smalltalk’s metaclasses provide a form of structural reflection, which for exam-
ple allows manipulating method dictionaries, but lack meta-level protocols that
can be intercepted in a procedurally reflective way (with the handling of the
“message not understood” exception being a notable exception) [22]. However,
Smalltalk provides first-class access to the current call stack via thisContext,
which roughly corresponds to a combination of the environment and the con-
tinuation parameters in reflective lambdas [23]. In [24] Ducasse provides an
overview of techniques, based on Smalltalk’s reflective capabilities, that can be
used to define a message passing control.

Self provides structural reflection via mirrors [25]. It can actually be argued
that mirrors are a rediscovery of up and down from 2-Lisp, but put in an object-
oriented setting. However, mirrors provide new and interesting motivations for
a strict separation into internal and external representations. Especially, mirrors
allow for multiple different internal representations of the same external object.
For example, this can be interesting in distributed systems, where one internal
representation may yield details of the remote reference to a remote object, while
another one may yield details about the remote object itself. AmbientTalk/2 is
based on mirrors as well, but extends them with mirages that provide a form of
(object-oriented) procedural reflection [26].

Aspect-oriented programming [27] extends existing programming models with
the means to “modify program join points”. Depending on the aspect model at
hand, program join points are defined as points in the execution of a program,
or as structural program entities. In an object-oriented setting, examples of the
former are “message sends” and “slot accesses”, examples of the latter are classes
and methods. The idea is that the programmer can make changes to program join
points without having to change their sources, but by defining distinct program
modules called “aspects”. This property is called obliviousness and is believed
to improve the quality of software in terms of better modularity.

One of the most influential aspect languages is AspectJ [28], which facilitates
adding methods to classes, but also supports advising methods with logging code.
Aspects are defined in terms of pointcut-advice pairs: Pointcuts are declarative
queries over program join points, whereas advice consists of pieces of Java code
that need to be integrated with the join points matched by a pointcut. AspectJ’s
pointcut language is a collection of predicates for detecting structural patterns
in source code, like the names of classes or methods, where code needs to be
inserted. AOP is a reflective approach in the sense that aspects are expressed as
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programs about programs, but unlike reflection, conventional AOP leaves out a
model of the language implementation, which greatly reduces its expressiveness.

5 Conclusions

In this paper, we have given an overview of the notion of computational reflec-
tion, as introduced by Brian Smith in the early 1980’s. His contributions include
the notions of structural and procedural reflection, as well as a recipe for adding
reflection not only to Lisp dialects, but to programming languages in general.
We have a reconstructed an implementation of all the major elements of 3-Lisp,
a procedurally reflective laguage, based on this recipe. We have chosen Common
Lisp as the basis for our implementation, a modern Lisp dialect, which should
make these contributions more accessible to a new and wider audience. We have
finally used the terminological framework of computational reflection to analyze
other metaprogramming and reflective approaches.

History shows that programming language designers always struggle to find
the right balance between hiding language implementation details and making
them accessible from within those languages. Apparently, it is inevitable that
reflective features find their ways into programming languages, whether their
designers are aware of this choice or not, because reflection is indeed a good
compromise between hiding and revealing such details. On the other hand, de-
signers and implementors have also always strived to minimize the cost of reflec-
tion by providing only subsets of such features. As we discussed in our overview
of reflective programming models, most approaches offer only restricted sub-
sets of structural reflection, because efficiency seems more straightforward to be
achieved in this case using compilation techniques. Nevertheless, procedurally
reflective features also always sneak in, but typically severely scaled down and
poorly integrated with structural reflection. Due to such compromises, however,
the complexity of writing reflective programs seems to increase, which in turn
fortifies the view that reflection is ’dangerous’ and should be provided in only
small doses. Unfortunately, Smith’s original account of computational reflection
has been lost along the road.

We are convinced that it is time to rediscover and rethink reflection from
the ground up, without any such compromises. Modern hardware is finally fast
enough to effectively reduce the necessity to focus on efficiency alone. The rise
in popularity of scripting languages in the last two decades shows that program-
mers are more and more interested in the flexibility offered by dynamicity and
reflection, rather than the limiting constraints of staticity and encapsulation. To
the contrary, we need more, not less reflection: For example, parallel program-
ming models for multicore processors and distributed systems require new ways
to toggle between absorbing and revealing details of language constructs, such
that programs can better reason about events in the past, present and future of
a computation in process. Brian Smith’s notion of computational reflection is an
invaluable basis to start from for these future investigations.
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1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

28. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

A Source Code

;;; config.lsp

(defpackage 3-proto-lisp
(:use common-lisp clos)
(:shadow boolean atom length prep first rest nth body reduce)
(:export read-normalize-print normalize-from-string)
(:nicknames 3pl))

#|
Copyright (c) 2007, 2008 Charlotte Herzeel

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
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The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

|#

;;; repl.lsp

(in-package 3-proto-lisp)

(defun read-normalize-print ()
(declare (special *global*))
(normalize (prompt&read)

*global*
(lambda (result!)

(prompt&reply result!)
(read-normalize-print))))

(defun prompt&read ()
(format t ">")
(three-lisp-read-and-parse))

(defun prompt&reply (result)
(format t "~%~a~&" (print-to-string result)))

;; Normalize from string

;; Flag to see if in repl mode

(defparameter *repl-mode* T)

(defun normalize-from-string (string)
(let ((*repl-mode* nil))
(normalize (internalize (read-from-string string)) *global* (lambda (result!) result!))))

(defun create-meta-continuation ()
(if *repl-mode*

(lambda (result!)
(prompt&reply result!)
(read-normalize-print))

(function unwrap)))

;; Loading ProtoLisp code from a file

(defun load-proto-lisp-file (filename-as-string)
(declare (special *global*))
(let ((path (make-pathname :name filename-as-string)))
(with-open-file (str path :direction :input)

(loop for line = (read str nil ’eof)
until (eql line ’eof)
do (normalize (internalize line) *global* (lambda (result!) result!))))))

;;; externalization.lsp

(in-package 3-proto-lisp)

;; Externalization

(defmethod external-type ((numeral numeral))
’numeral)
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(defmethod external-type ((number number))
’number)

(defmethod external-type ((cl-boolean cl-boolean))
’truth-value)

(defmethod external-type ((closure closure))
’closure)

(defmethod external-type ((function function))
’function)

(defmethod external-type ((rail rail))
’rail)

(defmethod external-type ((wrapped-cl-list wrapped-cl-list))
’sequence)

(defmethod external-type ((atom atom))
’atom)

(defmethod external-type ((symbol symbol))
’symbol)

(defmethod external-type ((pair pair))
’pair)

(defmethod external-type ((cons cons))
’procedure-call)

(defmethod external-type ((handle handle))
’handle)

(defmethod print-to-string ((handle handle))
(if (eql (class-of handle) (find-class ’handle))

(format nil "?~a" (print-to-string (cl-value handle)))
(format nil "~s" (cl-value handle))))

(defmethod print-to-string ((boolean boolean))
(cond ((eql (unwrap boolean) *cl-true*) "$T")

((eql (unwrap boolean) *cl-false*) "$F")
(t (error "print-to-string: Trying to print erronous boolean."))))

(defmethod print-to-string ((wrapped-cl-list wrapped-cl-list))
(format nil "~s" (cl-list wrapped-cl-list)))

(defmethod print-to-string ((rail rail))
(with-output-to-string (s)
(format s "[ ")
(loop for handle in (cl-list (unwrap rail))

do (format s (print-to-string handle)))
(format s " ]")))

(defmethod print-to-string (smth)
(format nil "~a" smth))

(defmethod print-to-string ((primitive-closure primitive-closure))
"<primitive procedure>")

(defmethod print-to-string ((reflective-closure reflective-closure))
"<reflective procedure>")

(defmethod print-to-string ((closure closure))
"<simple procedure>")
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;;; internalization.lsp

(in-package 3-proto-lisp)

;; Added syntax

;; Rails
(set-macro-character
#\] #’(lambda (stream char)

(declare (ignore char))
(read stream t nil t) nil))

(set-macro-character
#\[ #’(lambda (stream char)

(declare (ignore char))
(make-instance ’wrapped-cl-list :cl-list (read-delimited-list #\] stream t))))

;; Booleans

(defmethod identify-cl-boolean ((symbol (eql ’T)))
*cl-true*)

(defmethod identify-cl-boolean ((symbol (eql ’F)))
*cl-false*)

(defmethod identify-cl-boolean (smth)
(error "Error while parsing ~s, $ is reserved syntax for booleans." smth))

(set-macro-character
#\$ #’(lambda (stream char)

(declare (ignore char))
(identify-cl-boolean (read stream t nil t))))

;; Handle (cf ’)
;; In order not to confuse Common Lisp, we use ^ instead of ’ here.
(set-macro-character
#\^ #’(lambda (stream char)

(declare (ignore char))
(internalize (read stream t nil t))))

;; Internalize wraps CL values to internal structures
(defmethod internalize ((handle handle))

(make-instance ’handle :cl-value handle))

(defmethod internalize ((number number))
(make-instance ’numeral :cl-value number))

(defmethod internalize ((cl-boolean cl-boolean))
(make-instance ’boolean :cl-value cl-boolean))

(defmethod internalize ((wrapped-cl-list wrapped-cl-list))
(make-instance ’rail :cl-value (make-instance ’wrapped-cl-list

:cl-list (cl-list wrapped-cl-list))))

(defmethod internalize ((symbol symbol))
(make-instance ’atom :cl-value symbol))

(defmethod internalize ((cons cons))
(make-instance ’pair :cl-value cons))
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;;; normalization.lsp

(in-package 3-proto-lisp)

;; Normalization

;; Environments

(defclass environment (handle)
((bindings :initarg :bindings :initform ’() :accessor bindings)))

(defmethod environment-p ((environment environment))
T)

(defmethod environment-p (smth)
nil)

(defmethod ccons ((atom atom) (environment environment) (rail rail) pair)
(case (unwrap atom)
(simple
(make-instance ’closure
:name ’anonymous :lexical-environment environment :argument-pattern rail :body pair))

(reflect
(make-instance ’reflective-closure
:name ’anonymous :lexical-environment environment :argument-pattern rail :body pair))

(t
(error "ccons: unknown procedure type: ~s" (unwrap atom)))))

(defmethod print-to-string ((environment environment))
"<environment>")

(defmethod make-mapping ((atom atom) value)
(list atom value ’mapping))

(defmethod mapping-value (mapping)
(if (and (listp mapping) (eql (car (last mapping)) ’mapping))

(second mapping)
(error "Mapping expected.")))

(defmethod set-binding ((environment environment) (atom atom) (handle handle))
(push (make-mapping atom handle) (bindings environment)))

(defmethod add-binding ((environment environment) (atom atom) (handle handle))
(make-instance ’environment

:bindings (cons (make-mapping atom handle) (bindings environment))))

(defmethod bind ((environment environment) (argument-pattern rail) (arguments rail))
(cond ((empty-p argument-pattern) environment)

((= (length argument-pattern) (length arguments))
(bind (add-binding environment (first argument-pattern) (first arguments))

(rest argument-pattern) (rest arguments)))
(t
(error "bind: Function called with the wrong number of arguments."))))

(defmethod binding ((atom atom) (environment environment))
(let ((mapping (find (unwrap atom) (bindings environment)

:key (lambda (atom+value) (unwrap (car atom+value))))))
(if (null mapping)

(error "binding: variable ~s unbound in env." (unwrap atom))
(mapping-value mapping))))

;; Global environment

(defparameter *global* (make-instance ’environment))
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;; Normalize

(defun normalize (internal-structure environment continuation)
(cond ((normal-p internal-structure)

(funcall continuation internal-structure))
((atom-p internal-structure)
(funcall continuation (binding internal-structure environment)))

((rail-p internal-structure)
(normalize-rail internal-structure environment continuation))

((pair-p internal-structure)
(reduce (pcar internal-structure) (pcdr internal-structure)

environment continuation))
(t
(error "normalize: Error trying to normalize non internal structure ~s"

internal-structure))))

(defun normal-p (internal-structure)
(if (rail-p internal-structure)

(normal-rail-p internal-structure)
(and (not (atom-p internal-structure))

(not (pair-p internal-structure)))))

(defmethod normal-rail-p ((rail rail))
(or (empty-p rail)

(and (normal-p (first rail))
(normal-rail-p (rest rail)))))

(defun normalize-rail (rail environment continuation)
(if (empty-p rail)

(funcall continuation (rcons))
(normalize (first rail)

environment
(lambda (first!)

(normalize-rail (rest rail)
environment
(lambda (rest!)
(funcall continuation (prep first! rest!))))))))

(defun reduce (procedure arguments environment continuation)
(normalize procedure

environment
(lambda (procedure!)

(cond ((reflective-p procedure!)
(reduce-reflective procedure! arguments environment continuation))

((abnormal-p procedure!)
(reduce-abnormal procedure! arguments environment continuation))

(t
(normalize arguments

environment
(lambda (arguments!)
(if (primitive-p procedure!)

(funcall continuation
(wrap (apply (unwrap procedure!)

(cl-list (unwrap arguments!)))))
(normalize (body procedure!)

(bind (lexical-environment procedure!)
(argument-pattern procedure!) arguments!)

continuation)))))))))

(defun reduce-reflective (procedure! arguments environment continuation)
(let ((non-reflective-closure (de-reflect procedure!)))
(normalize (body non-reflective-closure)

(bind (lexical-environment non-reflective-closure)
(argument-pattern non-reflective-closure)
(wrap (make-instance ’wrapped-cl-list

:cl-list (list environment continuation arguments))))
(create-meta-continuation))))
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(defun reduce-abnormal (procedure! arguments environment continuation)
(ecase (name procedure!)
(set (reduce-set arguments environment continuation))
(lambda (reduce-lambda ’closure arguments environment continuation))
(lambda-reflect (reduce-lambda ’reflective-closure arguments environment continuation))
(if (reduce-if arguments environment continuation))
(apply (reduce-apply arguments environment continuation))
(apply-abnormal (reduce-apply-abnormal arguments environment continuation))))

(defun reduce-set (arguments environment continuation)
(declare (special *global*))
(let ((atom (first arguments)) ;; do not normalize the symbol

(expression (first (rest arguments)))) ;; normalize the expression
(normalize expression environment

(lambda (expression!)
(set-binding *global* atom expression!)
(funcall continuation (wrap ’ok))))))

(defun reduce-if (arguments environment continuation)
(let ((condition (first arguments))

(consequent (first (rest arguments)))
(antesequent (first (rest (rest arguments)))))

(normalize condition environment
(lambda (condition!)

(if (cl-bool (unwrap condition!)) ;; Not Lisp-style bools
(normalize consequent

environment
(lambda (consequent!)

(funcall continuation consequent!)))
(normalize antesequent

environment
(lambda (antesequent!)

(funcall continuation antesequent!))))))))

(defun reduce-lambda (closure-class-name arguments environment
continuation)

(let ((argument-pattern (first arguments))
(body (first (rest arguments))))

(funcall continuation
(make-instance closure-class-name

:name ’anonymous
:body body
:argument-pattern
(wrap (make-instance ’wrapped-cl-list

:cl-list (unwrap argument-pattern)))
:lexical-environment environment))))

(defmethod de-reflect ((reflective-closure reflective-closure))
(make-instance ’closure

:name (name reflective-closure)
:argument-pattern (argument-pattern reflective-closure)
:body (body reflective-closure)
:lexical-environment (lexical-environment reflective-closure)))

(defun reduce-apply (arguments environment continuation) ;; apply takes a symbol and a rail
(normalize arguments environment

(lambda (arguments!)
(reduce (first arguments!) (unwrap (first (rest arguments!)))

environment continuation))))
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(defun reduce-apply-abnormal (arguments environment continuation)
(normalize arguments environment

(lambda (arguments!)
(reduce (first arguments!)

(unwrap (first (rest (rest arguments!))))
(unwrap (first (rest arguments!)))
continuation))))

;;; structural-field.lsp

(in-package 3-proto-lisp)

;; Structural field

;; Classes implementing the ProtoLisp types.
;; Instances of these classes are the internal representation of ProtoLisp values.
;; Instances of these classes are called internal structures.

(defclass handle ()
((cl-value :initarg :cl-value :accessor cl-value)))

;; NUMBER

(defclass numeral (handle)
())

;; BOOLEAN

(defclass boolean (handle)
())

;; CLOSURE

(defclass closure (handle)
((body :initarg :body :accessor body :initform nil)
(lexical-envrionment :initarg :lexical-environment :accessor lexical-environment :initform nil)
(name :initarg :name :accessor name :initform nil) ; for debugging
(argument-pattern :initarg :argument-pattern :accessor argument-pattern :initform nil)))

(defclass primitive-closure (closure)
())

(defclass reflective-closure (closure)
())

;; Abnormal closures are primitive closures whose arguments are not all normalized

(defclass abnormal-closure (primitive-closure)
())

;; RAIL

(defclass rail (handle)
())

;; Helper class, for representing rails in CL

(defclass wrapped-cl-list ()
((cl-list :initarg :cl-list :accessor cl-list)))

;; ATOM

(defclass atom (handle)
())

(defclass pair (handle)
())
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;; Operations boolean

(defmethod boolean-p ((boolean boolean))
T)

(defmethod boolean-p (smth)
nil)

;; Operations atom

(defmethod atom-p ((atom atom))
T)

(defmethod atom-p (smth)
nil)

;; Operations numeral

(defmethod numeral-p ((numeral numeral))
T)

(defmethod numeral-p (smth)
nil)

;; Operations pair

(defmethod pair-p ((pair pair))
T)

(defmethod pair-p (smth)
nil)

;; Operations closure

(defmethod primitive-p ((primitive-closure primitive-closure))
T)

(defmethod primitive-p (smth)
nil)

(defmethod reflective-p ((reflective-closure reflective-closure))
T)

(defmethod reflective-p (smth)
nil)

(defmethod abnormal-p ((abnormal-closure abnormal-closure))
T)

(defmethod abnormal-p (smth)
nil)

(defmethod closure-p ((closure closure))
T)

(defmethod closure-p (smth)
nil)

;; Operations pair

(defmethod pcar ((pair pair))
(wrap (car (unwrap pair))))

(defmethod pcdr ((pair pair))
;; returns a rail
(wrap (make-instance ’wrapped-cl-list :cl-list (cdr (unwrap pair)))))
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(defmethod pcons ((handle1 handle) (handle2 handle))
(wrap (cons (unwrap handle1) (unwrap handle2))))

;; Operations rail

(defmethod rail-p ((rail rail))
T)

(defmethod rail-p (smth)
nil)

(defmethod rcons (&rest list-of-structures)
(wrap (make-instance ’wrapped-cl-list :cl-list (mapcar (function unwrap) list-of-structures))))

(defmethod scons (&rest list-of-structures)
(make-instance ’wrapped-cl-list :cl-list list-of-structures))

(defmethod pcons ((handle handle) (rail rail))
(wrap (cons (unwrap handle) (cl-list (unwrap rail)))))

(defmethod prep ((handle handle) (rail rail))
(wrap (make-instance ’wrapped-cl-list :cl-list (cons (unwrap handle) (cl-list (unwrap rail))))))

(defmethod prep (smth (wrapped-cl-list wrapped-cl-list))
(make-instance ’wrapped-cl-list :cl-list (cons smth (cl-list wrapped-cl-list))))

(defmethod length ((rail rail))
(cl:length (cl-list (unwrap rail))))

(defmethod nth (nr (rail rail))
(wrap (cl:nth nr (cl-list (unwrap rail)))))

(defmethod nth (nr (wrapped-cl-list wrapped-cl-list))
(cl:nth nr (cl-list wrapped-cl-list)))

(defmethod pcar ((rail rail))
(nth 0 rail))

(defmethod pcdr ((rail rail))
(tail 1 rail))

(defmethod tail (nr (rail rail))
(wrap (make-instance ’wrapped-cl-list :cl-list (cl:nthcdr nr (cl-list (unwrap rail))))))

(defmethod tail (nr (wrapped-cl-list wrapped-cl-list))
(make-instance ’wrapped-cl-list :cl-list (cl:nthcdr nr (cl-list wrapped-cl-list))))

(defmethod first ((rail rail))
(wrap (cl:first (cl-list (unwrap rail)))))

(defmethod rest ((rail rail))
(wrap (make-instance ’wrapped-cl-list :cl-list (cl:rest (cl-list (unwrap rail))))))

(defmethod rest ((wrapped-cl-list wrapped-cl-list))
(make-instance ’wrapped-cl-list :cl-list (cl:rest (cl-list wrapped-cl-list))))

(defmethod empty-p ((rail rail))
(null (cl-list (unwrap rail))))

(defmethod empty-p ((wrapped-cl-list wrapped-cl-list))
(null (cl-list wrapped-cl-list)))

;; Equality

(defmethod proto-lisp= ((handle1 handle) (handle2 handle))
(proto-lisp= (unwrap handle1) (unwrap handle2)))
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(defmethod proto-lisp= ((rail1 rail) (rail2 rail))
(declare (special *cl-false*))
*cl-false*)

(defmethod proto-lisp= ((handle1 handle) smth)
(declare (special *cl-false*))
*cl-false*)

(defmethod proto-lisp= (smth (handle1 handle))
(declare (special *cl-false*))
*cl-false*)

(defmethod proto-lisp= (smth1 smth2)
(declare (special *cl-true* *cl-false*))
(if (equal smth1 smth2)

*cl-true*
*cl-false*))

;; Internalization & Parsing

;; Reads from the standard input, these are plain CL values, which are mapped onto ProtoLisp values.
;; Most syntax of ProtoLisp overlaps with CL’s syntax, for other cases there is a read macro.

(defun three-lisp-read-and-parse ()
(let ((input (read)))
(internalize input)))

;; Helper classes because syntax per type is unique in ProtoLisp, but not in CL.

(defclass cl-boolean ()
())

(defparameter *cl-true* (make-instance ’cl-boolean))
(defparameter *cl-false* (make-instance ’cl-boolean))

(defmethod cl-bool ((obj (eql *cl-true*)))
T)

(defmethod cl-bool ((obj (eql *cl-false*)))
nil)

(defmethod cl-bool (smth)
(error "cl-bool: ~s is not either *cl-true* or cl-false" smth))

(defun cl->cl-bool (smth)
(if smth

*cl-true*
*cl-false*))

(defmethod proto-lisp= ((smth1 wrapped-cl-list) (smth2 wrapped-cl-list))
(if (equal (cl-list smth1) (cl-list smth2))

*cl-true*
*cl-false*))

;; sequence equivalent
(defmethod length ((wrapped-cl-list wrapped-cl-list))

(cl:length (cl-list wrapped-cl-list)))

;; Wrapping and Unwrapping

(defclass cl-closure ()
((3l-closure :initarg :closure :reader closure))
(:metaclass funcallable-standard-class))

(defmethod cl-closure-p ((cl-closure cl-closure))
T)
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(defmethod cl-closure-p (smth)
nil)

(defmethod wrap ((cl-closure cl-closure))
(closure cl-closure))

(defmethod wrap (smth)
(internalize smth))

(defmethod wrap ((function function))
(make-instance ’primitive-closure :cl-value function))

(defmethod unwrap ((handle handle))
(cl-value handle))

(defmethod unwrap ((primitive-closure primitive-closure))
(cl-value primitive-closure))

(defmethod unwrap ((reflective-closure reflective-closure))
(let ((cl-closure (make-instance ’cl-closure :closure reflective-closure)))
(set-funcallable-instance-function
cl-closure
(lambda (&rest args)

(declare (ignore args))
(error "Don’t call reflective closures within Common Lisp code.")))

cl-closure))

(defmethod unwrap ((closure closure))
(declare (special *global*))
(let ((cl-closure (make-instance ’cl-closure :closure closure)))
(set-funcallable-instance-function
cl-closure
(lambda (args)

(reduce closure
(make-instance ’rail

:cl-value (make-instance ’wrapped-cl-list :cl-list (list args)))
*global*
(create-meta-continuation))))

cl-closure))

;;; primitives.lsp

(in-package 3-proto-lisp)

;; Primitives

(defun set-primitive (name lambda)
(declare (special *global*))
(set-binding *global* (wrap name) (wrap lambda)))

(defun set-primitive-abnormal (name lambda)
(declare (special *global*))
(declare (special *cl-false*))
(set-binding *global* (wrap name)

(make-instance ’abnormal-closure
:body lambda :name name :cl-value (wrap *cl-false*))))

;; arithmetic
(set-primitive ’+ (function +))
(set-primitive ’- (function -))
(set-primitive ’* (function *))
(set-primitive ’/ (function /))
(set-primitive ’= (function proto-lisp=))
(set-primitive ’< (lambda (cl-val1 cl-val2) (cl->cl-bool (< cl-val1 cl-val2))))
(set-primitive ’> (lambda (cl-val1 cl-val2) (cl->cl-bool (> cl-val1 cl-val2))))
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;; printing

(set-primitive ’print (function print))
;; pair
(set-primitive ’pcar (function pcar))
(set-primitive ’pcdr (function pcdr))
(set-primitive ’pcons (function pcons))
;; rails and sequences
(set-primitive ’rcons (function rcons))
(set-primitive ’scons (function scons))
(set-primitive ’prep (function prep))
(set-primitive ’length (function length))
(set-primitive ’nth (function nth))
(set-primitive ’tail (function tail))
(set-primitive ’empty (lambda (rail) (cl->cl-bool (empty-p rail))))
;; closure
(set-primitive ’body (function body))
(set-primitive ’pattern (function argument-pattern))
(set-primitive ’environment (function lexical-environment))
(set-primitive ’ccons (function ccons))
;; atoms
(set-primitive ’acons (function gensym))
;; typing
(set-primitive ’type (function external-type))
(set-primitive ’primitive (lambda (closure) (cl->cl-bool (primitive-p closure))))
(set-primitive ’reflective (lambda (closure) (cl->cl-bool (reflective-p closure))))
;; up & down
(set-primitive ’up (function wrap))
(set-primitive ’down (function unwrap))
;; abnormal primitives, i.e. primitives whose args are not normalized
(set-primitive-abnormal
’set

(lambda (&rest args) (declare (ignore args)) (error "Trying to call set")))
(set-primitive-abnormal
’lambda

(lambda (&rest args) (declare (ignore args)) (error "Trying to call lambda")))
(set-primitive-abnormal
’lambda-reflect
(lambda (&rest args) (declare (ignore args)) (error "Trying to call lambda-reflect")))

(set-primitive-abnormal
’if

(lambda (&rest args) (declare (ignore args)) (error "Trying to call if")))

(set-primitive-abnormal
’apply
(lambda (&rest args) (declare (ignore args)) (error "Trying to call apply")))

(set-primitive-abnormal
’apply-abnormal
(lambda (&rest args) (declare (ignore args)) (error "Trying to call apply-abnormal")))

;; global environment
(set-primitive ’global *global*)
(set-primitive ’binding (function binding))
(set-primitive ’bind (function bind))
;; normalize
(set-primitive ’normalize (function normalize))
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Abstract. We report on our experiences with the Spy project, including
implementation details and benchmark results. Spy is a re-implementa-
tion of the Squeak (i.e., Smalltalk-80) VM using the PyPy toolchain.
The PyPy project allows code written in RPython, a subset of Python,
to be translated to a multitude of different backends and architectures.
During the translation, many aspects of the implementation can be inde-
pendently tuned, such as the garbage collection algorithm or threading
implementation. In this way, a whole host of interpreters can be derived
from one abstract interpreter definition. Spy aims to bring these bene-
fits to Squeak, allowing for greater portability and, eventually, improved
performance. The current Spy codebase is able to run a small set of
benchmarks that demonstrate performance superior to many similar
Smalltalk VMs, but which still run slower than in Squeak itself. Spy
was built from scratch over the course of a week during a joint Squeak-
PyPy Sprint in Bern last autumn.

1 Introduction

In this paper we present a preliminary report on the Spy project. Spy is an
implementation of the Squeak [4] variant of Smalltalk built using the PyPy
toolchain [8]. The goals of the Spy project are to allow the popular Squeak
platform to be easily ported to high-level runtimes, such as the Java Virtual
Machine (JVM) and Common Language Runtime (CLR), as well as to even-
tually improve Squeak’s performance through the use of PyPy’s Just-in-time
(JIT) compiler generation techniques. The Spy project also serves to highlight
some of the distinctive features in PyPy’s approach to building virtual machines,
especially when it is compared to Squeak.

Squeak is an open source, full-featured implementation of Smalltalk. One of
its distinctive features is that the virtual machine itself is written in Slang [4], a
restricted subset of Smalltalk. Slang is designed to be easily translated into C,
meaning that the core VM can be translated into C and then compiled with a
standard C compiler. This allows Squeak to enjoy reasonably fast execution and
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high portability, while preserving the ability to read and understand the VM
source code without leaving Smalltalk.

The PyPy project1 is a toolchain for building interpreters [8]. It allows inter-
preters to be written in RPython, a restricted form of Python, and then translated
to a more efficient lower-level language for execution. PyPy is able to translate
RPython programs to many different backends, ranging from C source code, to
JavaScript (for execution in the browser), to bytecodes for the JVM or CLR, al-
though not all of these backends are as full-featured as the others. In addition to
simple translation, PyPy can introduce optimizations along the way, and can even
generate a just-in-time compiler semi-automatically from the interpreter source.
These features are described in depth in other publications [1,6].

At first glance, it may seem that the role of Slang in Squeak and RPython in
Spy /PyPy are very similar. Both are restricted forms of a dynamic language used
to code the core of the interpreter. However, the similarity is only skin deep. Slang,
the restricted form of Smalltalk used by Squeak, is designed to be easily translated
to C. Slang only contains constructs that can be directly mapped to C. RPython,
on the other hand, is much closer to the full Python language and includes such
features as garbage collection, classes with virtual functions, and exceptions. Hav-
ing such facilities available frees the programmer to focus on the language design
issues and ignore the mundane, low-level details of writing a VM.

The main contributions of this paper are

– We report on our experiences using the PyPy toolchain to realize Spy, a
Smalltalk-80 VM.

– We present implementation details and discuss design decisions of the real-
ized VM.

– We compare benchmarks of Spy with those of similar Smalltalk VMs.

The remainder of this paper is structured as follows: In Section 2 we present
a brief overview of the PyPy project. In Section 3 we explain how the PyPy
approach has been adapted in the Spy project to the implementation of a Squeak
VM. Related work is presented in Section 4. Section 5 presents the results of
various benchmarks to validate the effectiveness of the Spy implementation. We
provide remarks on future work in Section 6 and eventually present in Section 7
our conclusions. Additionally, the source code of the benchmarks is given in
Appendix A, and download and build instructions for both PyPy and Spy are
given in Appendix B.

2 PyPy in a Nutshell

Although the initial goal of the PyPy project was to implement a next-generation
interpreter for Python, the project has gradually evolved into a general-purpose
tool that can be used for any number of languages. In addition to Python and
Smalltalk, (partial) interpreters have been developed for Prolog, Scheme and
JavaScript.
1 http://codespeak.net/pypy/

http://codespeak.net/pypy/
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The goal of the PyPy project is to create an environment that makes it easy
to experiment with different virtual machine designs, but without sacrificing
efficiency. This is achieved by separating the semantics of the language being
implemented, such as Python or Smalltalk, from low-level aspects of its imple-
mentation, such as memory management or the threading model. A complete
interpreter is constructed at build time by weaving together the interpreter def-
inition and each low-level aspect into a complete and efficient whole [8].

The project currently includes a wide variety of backends that support trans-
lations from RPython into C/Posix, LLVM[5], CLI/.NET, Java bytecodes, and
JavaScript, although only the first three are fully functional.

The translation process works by using abstract interpretation to convert the
RPython programs into flow graph form. The graphs are then used for whole-
program type inference, which assigns a static type to all values used in the
program. The ability to perform type inference on the input programs is the
key requirement for the PyPy toolchain. This means that RPython is defined,
rather imprecisely, to be the subset of Python which our tools can statically
check. In practice, RPython forbids runtime reflection and any type-inconsistent
usage of variables (e.g., assigning both integers and object references to the
same variables). Despite these restrictions, RPython is still quite expressive,
supporting exceptions, single inheritance with explicitly declared mixins (instead

Python
Interpreter

Prolog

JavaScript

Scheme

Type and Flow 
Analysis

Specialize for object 
oriented environment

Specialize for low-
level environment

C backend LLVM backendCLI backend JVM backend JS backend

Other
interpreters…

prolog-c pypy-llvmprolog-jsjs-jvmprolog.net

pypy-c scheme-c …-llvmJPyPyjs.netpypy.net

Fig. 1. The PyPy toolchain specializes high-level interpreters for different languages
into compilers or VMs for different platforms
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of Python’s full multiple inheritance), dynamic dispatch, first class function and
class values, and runtime isinstance and type checks.

Once the flow graphs have been built and typed, they can be transformed
by any number of translation aspects[1] which implement low-level details, such
as garbage collection or a variant of the CPS-transformation. These translation
aspects give tremendous flexibility in controlling the behavior and performance
of the final interpreter and also illustrate one of the advantages of specifying the
interpreter in a higher-level language like RPython. Because RPython does not
specify low-level details such as the garbage collection strategy, the toolchain is
free to implement them however it sees fit. In contrast, changing the traditional,
C-based Python interpreter so as not to use reference counting would require
pervasive changes throughout the entire codebase.

The promise of PyPy and RPython is that it should be possible to develop
a single interpreter source which can be used via different choices of transla-
tion aspects and backends, to create a whole family of interpreters on a wide
variety of platforms, as illustrated by Figure 1. This avoids the problem that
many languages face, i.e., to keep the interpreter definition in sync across all
platforms on which it is supported, and to allow all versions to benefit from
new features and optimizations instantly. As an example, consider the Jython
project2, which defines a Python interpreter on the JVM. Because Jython and
CPython do not share the same source, Jython lags several versions behind its
C counterpart, making it increasingly challenging to use with modern Python
programs. PyPy essentially offers a model-driven approach [9] to programming
language implementation — it transforms platform-independent models (i.e.,
high-level interpreters) into implementations for multiple platforms.

Another advantage of this approach is that since RPython is a proper subset
of Python, an RPython program can be fully tested and easily debugged by
letting it run on a Python interpreter. The program is only translated to a
different language if it is reasonably bug-free. This increases testability, eases
development, and decreases turnaround times.

3 Spy Implementation

Similar to most Smalltalk VMs, Spy consists of four main parts: a bytecode
interpreter, a set of primitives, an image loader, and an object model.

3.1 Interpreter, Primitives, and Image Loading

The core components of a Smalltalk VM are the bytecode interpreter, primitive
methods, and the image loader. For the most part Spy does not deviate from
the traditional Smalltalk VM design [3], though in some cases we made minor
alterations. For example, Spy is not based on an object table, i.e., objects refer-
ence each other directly without a level of indirection. This is similar to Squeak’s
approach as described in Section 4.
2 http://jython.org/
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Before:

table = [method_for_opcode_0, method_for_opcode_1, ...]

while 1:

byte = get_next_byte()

method = table[byte]

method()

After:

while 1:

byte = get_next_byte()

switch on byte:

case 0:

method_for_opcode_0()

case 1:

method_for_opcode_1()

...

Fig. 2. Translation of the dispatch loop from a bytecode table to a local switch

Bytecodes in Smalltalk are generally used to implement control flow and
message sends, and to introduce constant values into the computation. Spy’s
bytecode interpreter takes a traditional form, consisting of a table of function
pointers, which is indexed by the current bytecode on every iteration.

As a performance optimization, during the translation process to C, we are
able to take advantage of the fact that the function table is immutable. This
allows us to alter the dispatch loop so that it uses a local switch to translate
bytecodes to method calls, rather than having an indirection via the global
opcode table (see Figure 2). This will not only localize lookups but it will also
use direct instead of indirect calls. Which will then allow for further optimizations
such as inlining of the actual code related to the bytecodes.

Compared to other virtual machines, Smalltalk contains relatively few byte-
codes. For example, there are no bytecodes for low-level operations such as
doing arithmetic. Instead, these operations are implemented as primitive meth-
ods, which are methods that are implemented in the core virtual machine, either
for efficiency’s sake or because they encode a fundamental operation which isn’t
possible to express in the language itself, such as integer addition.

Primitive methods are invoked as the result of normal message sends. When an
object receives a message in Smalltalk, the first thing that happens is the lookup
of the corresponding method implementation. The resulting method object con-
tains the bytecodes to execute and, optionally, a primitive method identifier,
which is just a small integer. If a primitive method identifier is supplied, the
VM uses the integer to index into its primitive method table to find a built-in
function to execute.

As in Squeak, primitive methods in Spy are implemented as a series of func-
tions placed into a table. In Spy, however, we are able to take advantage of
several RPython features to make their implementation less tedious and error-
prone. The first feature are exceptions: in the Squeak VM, when a primitive
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@expose_primitive(FLOAT_SQUARE_ROOT, unwrap_spec=[float])

def func(interp, f):

if f < 0.0:

raise PrimitiveFailedError

w_res = utility.wrap_float(math.sqrt(f))

return w_res

Fig. 3. The definition of the primitive square root operation in RPython. The code uses
high-level features, such as method decorators, exceptions, and object-orientation.

method wants to signal failure, it does so by setting a field, primitiveFailed,
of the global interpreter object to true. This means that all following code must
be guarded to ensure that it does not execute once the primitiveFailed field
is set to true. In RPython, however, we can use a Python exception to signal a
failure condition, resulting in less cluttered code.

The second RPython feature, which proved to be very important is its capacity
for meta-programming. Because primitive methods execute directly on the VM
structures, they often contain a certain amount of repetitive code that loads
method arguments from the stack, inspects their types, and finally pushes any
result back onto the stack. Using Python annotations, however, we are able
to attach a declarative tag to each primitive method stating the number of
stack arguments it expects, any preprocessing they require, and whether or not
a result is pushed back on the stack after execution. This not only makes the
primitives shorter, it helps to avoid errors. In particular, we were able to use these
annotations to specify when an argument represents an array index: since array
indices are 1-based in Smalltalk, the preprocessor is not only able to confirm
that the index is an integer, but can automatically subtract 1 to convert it to a
0-based RPython array index, leading to much cleaner code.

Figure 3 shows the definition of the primitive method for computing square
roots. The @expose_primitive annotation on the first line declares both the
primitive code, which is the symbolic constant FLOAT_SQUARE_ROOT, and the
fact that the function expects only one argument from the stack, which should
be a floating point value. Note that the object on the stack is actually a wrapped
floating point value, but the preprocessor automatically inserts code to unwrap
it and extract the RPython floating point value within. This unwrapped value is
passed to the implementation function. Within the body of the function, there
is a test that ensures that the argument is positive which raises an exception
(PrimitiveFailedError) should that not be the case. Otherwise, the square
root is computed using the standard RPython function math.sqrt, wrapped in a
Smalltalk object, and returned. Note that the return value will be automatically
pushed on the stack.

For comparison, Figure 4 shows the the same primitive method in Slang.
The key difference to RPython is that Slang does not provide object-oriented
language features. Slang is, roughly spoken, C code disguised as Smalltalk syntax.

For example, to indicate failure, a global field of the interpreter is used rather
than throwing an exception. Pushing and popping has to be done manually.
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primitiveSquareRoot

| rcvr |

self var: #rcvr type: ’double ’.

rcvr := self popFloat.

self success: rcvr >= 0.0.

successFlag

ifTrue: [self pushFloat:

(self cCode: ’sqrt(rcvr)’ inSmalltalk: [rcvr sqrt])]

ifFalse: [self unPop: 1]

Fig. 4. The definition of the primitive square root operation in Slang. The code is,
roughly spoken, C code disguised as Smalltalk syntax. Object-oriented features are not
used, e.g., failure is signalled with flag rather than an exception.

But in particular the call to #cCode:inSmalltalk: breaks abstractions and
testability: as a first argument it is given a fragment of C code, as a second
argument a Smalltalk closure. When translating the VM down to C, the code
fragment is literally copied into the generated source code. When debugging the
VM within another Smalltalk image, the closure is evaluated. As both are not
causally connected, it might even happen that a bug in the C code does not
appear when debugging the VM and vice versa!

Image loading is one area where Spy differs significantly from Squeak. Tra-
ditionally, a Squeak image is simply a dump of the core memory into a file.
Loading an image can be done by simply memory-mapping the image file, fol-
lowed by some minimal pointer and integer adjustments. This technique works
well when you can guarantee that the memory layout between virtual machines
is compatible. Unfortunately, the memory layout for a RPython program is not
specified and sometimes even outside of the control of PyPy’s toolchain, if the
translation target is a high-level VM such as the JVM or .NET’s CLR. Since we
wanted to retain compatibility with Squeak’s image formats, we implemented an
image loader that proceeds by parsing the Squeak image file formats, decoding
the object headers, and constructing equivalent objects in our own VM.

3.2 Object Model

The Squeak implementation uses three different addressing schemes for its ob-
jects: bytes, words, and pointers. Each object structure begins with a format
word that describes which kind of object it is. This determines how the raw
bytes that make up an object in memory are interpreted: a “bytes” object treats
them as an array of bytes, which is useful for classes like strings. “Words” objects
store words, and are useful for vectors of integers. Finally, “pointers” objects con-
tain pointers, and are used for almost all other kinds of objects. In addition, as
is common in many VMs, small integers are represented as tagged pointers.

The Spy model is somewhat more complex. In addition to bytes, words, and
pointers objects, we have special classes for representing compiled methods,
method and block contexts (stack frames), small integers, and floating point
values. Please refer to Figure 5 for the full class hierarchy.
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All these classes are subclasses of an abstract class representing a Smalltalk
object (W_Object). Therefore they all implement the same interface, which makes
them equivalent from the Smalltalk point of view, and any of them can be used
anyplace that a standard Smalltalk object is expected. The concrete implementa-
tion, however, differs from class to class. For the classes that are close to the VM
internals (such as compiled methods, method and block contexts), the implemen-
tation is made as convenient for the VM as possible, whereas the implementation
of generic Smalltalk objects is less complex.

As illustrated by Figure 5, small integers are implemented by a normal class
that has exactly one field, which contains the value of the integer itself. This
deviates from the original design in the Squeak VM where they are represented
by tagged pointers. To compare results of both styles, we could easily mimic
the behavior of the Squeak VM by plugging an extra transformation into the
toolchain. With the transformation turned on, the resulting C source generated
by the toolchain would actually use tagged pointers as representation of small
integers. This is by itself already another example where the RPython code
abstracts over low-level details. We can assume a consistent model everywhere
and do not need to check for tagged pointers throughout the source code, while
resulting in the exact same behavior. A small bit of experimentation seemed to
indicate that using tagged pointers for small integers actually worsens perfor-
mance. The necessity of checking whether a pointer is a heap pointer or a small
integer around every method call offsets all the benefits of the smaller memory
footprint that comes with tagged small integers. It is important to note, however,
how tedious it would be to experimentally introduce or remove tagged pointers
with a traditional, low-level interpreter.

The class hierarchy illustrated by Figure 5 is internal to the VM, it is not
related to Squeak’s class hierarchy. All these classes are internally used for

W_Float W_AbstractObjectWithIdentityHash

W_AbstractObjectWithClassReference W_CompiledMethod W_ContextPart

W_PointersObject W_BytesObject W_WordObject W_BlockContext W_MethodContext

size
getclass
gethash
at0
atput0
fetch
store
shadow_of_my_class
equals

W_Object

value
W_SmallInteger

Fig. 5. Different kinds of objects in the Spy implementation
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wrapper objects, hence the W prefix, and do not denote the high-level class of ob-
jects. Which high-level class an object has is completely under control of Squeak
itself, it is stored in the W Object.shadow of my class field. Thus, the VM’s
class hierarchy can be used to run any version of Squeak. Both Squeak 2.0 and
Squeak 3.9 images run with the current implementation of Spy.

3.3 Shadow Objects

As noted in the previous section, Squeak does not distinguish between objects
based on the role that they play in the system, but only based on the kind of
data that they contain (bytes, words, or objects). For example, a class object is
simply an object that is used as a class by some other object. It is not necessarily
an instance of a particular class, though the layout of the object in memory must
be compatible with what the VM expects3. This implies that, at image loading
time, it is impossible to distinguish which objects are, or will be later, used as
classes, and so we cannot use a special subclass of W_Object to represent them.

Unfortunately, being forced to use a generic data layout for such special kinds
of objects as classes can be very inefficient. The memory layout of Smalltalk data
structures were chosen with an eye towards reducing memory consumption, and
not for ease of access. Spy could be made far more efficient if it could use
native RPython data structures instead. For example, each class has a method
dictionary that is normally stored as a native Smalltalk Dictionary instance.
If this method dictionary could be converted by the VM into a native RPython
dictionary, then Spy could take advantage of the highly optimized RPython
dictionary implementation.

To resolve this dilemma, Spy allows every Smalltalk object to have an asso-
ciated “shadow” object. These shadow objects are not exposed to the Smalltalk
world. They are used by the VM as internal representation and can hold ar-
bitrary information about the actual object. If an object has a shadow object
attached, the shadow is notified whenever the state of the actual object changes,
to keep both views of the object synchronized. One way of looking at shadows is
as a general cache mechanism. However, the approach is far more powerful, since
arbitrary meta-level operations can be triggered when the update notifications
are received4.

In the current implementation, the shadows are used to attach nicely de-
coded information about classes to all objects which are used as classes. This
allows any object to be used as a class, even ones that are not instances of the
3 To be used as a class, a Squeak object must have at least three instance variables, of

which the first must refer to its superclass, the second must refer to a method dictio-
nary, and the third must contain a magic number encoding the format of instances.
Any object that meets these criteria, and implements primitive #70 (primitiveNew),
can be used to create instances of itself.

4 Shadow objects are not related to the concept of mirrors. Mirrors are a mechanism
to introduce reflection on demand. Shadow objects are an implementation artifact
of our design allowing us to benefit from native RPython data structures. They have
nothing to do with reflection per se, though they could be used for this purpose too.
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Smalltalk class Class. The shadow object is created and attached to the class
the first time the VM sees the object being used as a class. It stores all required
information about the class in a convenient, easily accessible data structure (as
opposed to the obscure bit format used at the Smalltalk level). The class shadow
contains the format and size of instances, an RPython-level dictionary contain-
ing the compiled methods, and the name of the class (if it has one). All of this
information is kept in sync with the “real” Smalltalk object that the shadow is
associated with.

At the moment5 classes are the only objects that have shadows attached to
them. It seems likely that we will change some of the objects that are now imple-
mented with special RPython classes to use shadows as well later. For example,
Squeak allows arbitrary objects to be used as method and block contexts, but the
current Spy implementation does not. This could be resolved by using shadow
objects to contain any extra information associated with objects that are used
as a context.

3.4 State of the Implementation

The VM parts described in the previous subsections add up to the current im-
plementation of Spy. This implementation is able to load Squeak images (tested
with the Squeak 2.0 mini image and more recent Squeak 3.9 images) and execute
all bytecodes and a subset of primitives. The most important missing primitives
are the graphical primitives. We do already support enough for the VM to be
able to run the tinyBenchmarks. Furthermore we are still lacking support for
threading and image saving.

4 Related Work

In this section we present existing Smalltalk VMs, and discuss how their imple-
mentation relates to Spy. The VM of the Squeak dialect of Smalltalk follows
closely the specification given in the Smalltalk-80 Blue Book[3]. The Blue Book
specifies an object memory format, the bytecodes, the primitives, and the inter-
preter loop of a Smalltalk VM.

4.1 Squeak VM

The main difference of Squeak’s VM [4] compared to the Smalltalk-80 specifi-
cation of the Blue Book [3] is the object memory format. The object memory
specified in the blue book is based on an object table. An object table introduces
a level of indirection for object references. In contrast, Squeak implements ob-
ject references as direct pointers, that is, an object reference is just the address
of that object in memory. Today, this is the common approach taken by most
virtual machines.
5 This paper refers to revision 49630 of Spy on codespeak’s SVN repository, for more

information please refer to the download instructions in Appendix B.
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Squeak’s object memory layout consists of a header for the class pointer,
hash bits, GC flags, size etc. and a fixed number of fields. There are four kinds
of object formats. Objects with named instance variables, indexed object fields,
indexed word size or byte size fields. Everything, including interpreter-internal
data such as execution contexts, processes, classes, and methods, is represented
as a normal object on the heap. An exception is the case of small integers, which
are represented as tagged pointers. Special objects that have to be known to the
interpreter, for example the process scheduler, are stored in a global table.

The majority of the Squeak VM is implemented in a subset of Squeak Small-
talk, named Slang. The Slang source code is then translated to C code to compile
and link with the low-level, platform-specific C code. Slang is a very restricted
subset of Smalltalk which does not support classes, exception handling, or other
object-oriented language features. Therefore, Slang does not provide a higher
level of abstraction than C.

Nevertheless, using Slang has advantages compared to writing C code man-
ually. First, the translator applies several optimizations such as generating C
switch statements for the dispatch loop or inlining procedure calls. Second, since
Slang is a Smalltalk subset it can be run within another Squeak image, which
can be very useful for debugging. As Squeak allows for incremental compilation,
the implementation of the VM can be changed while it is running. In this way,
time consuming edit-transform-compile-run cycles can be avoided.

The approach taken by PyPy is similar to that of Squeak/Slang, as the VM
implemented in RPython can also be run directly without transformation and
compilation. However, the key difference is that RPython (restricted Python)
is much less restrictive than Slang. RPython provides object-oriented language
features such as objects, class-based inheritance, exceptions, and translation-
time reflection and metaprogramming [8,7]. As discussed throughout this pa-
per, RPython’s extended capabilities simplify the implementation of the VM in
many ways, ranging from using code generation and annotations to avoid boiler-
plate code, to the automation of complex, far-reaching optimizations like tagged
integers.

5 Evaluation

In this section we present a comparison of performance and codebase size of
different Smalltalk VM implementations.

5.1 Performance Benchmarks

To analyze VM performance, we use the TinyBenchmarks suite which is part
of the Squeak mini image [2]. The TinyBenchmarks tests bytecode interpreta-
tion and message send performance. We refer the reader to Appendix A for the
complete source code of the benchmark suite. For the Smalltalk platforms that
do not support direct loading of our reference image, we ported the source code
manually. All the platforms successfully run the TinyBenchmarks and produced
the following two figures:
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Fig. 6. Benchmark results for the TinyBenchmarks for various VMs, normalized to the
Squeak VM

Bytecodes per second. To compare the performance of a virtual machine, we need
to know how fast the bytecodes are processed by the VM. This is the first number
reported by TinyBenchmarks. The value is calculated from a bytecode-heavy
implementation of the “Sieve of Eratosthenes”. The result is calculated using the
runtime performance of this algorithm and the number of executed bytecodes.
The number of executed bytecodes is the number of bytecodes that Squeak
executes when running the benchmark, which makes the number meaningful
even on different implementations.

Sends per second. In Smalltalk everything happens by message sends, with the
exception of some transparently inlined control structures. Therefore an efficient
implementation of message sends is crucial. The second number reported by
TinyBenchmarks is the message sends (method lookup and method invocation)
per second. It is calculated from the the runtime performance of a send-heavy
recursive calculation of Fibonacci numbers.

In Figure 6 we present the result of running the TinyBenchmarks on various
VMs in relation to the original Squeak VM. The machine used was an Apple Mac



Back to the Future in One Week 135

Pro (2 × 3 GHz Dual-Core Intel Xeon, 3 GB RAM). All the benchmarks were
run 20 times; the final numbers are the arithmetic mean of those measurements.

Squeak VM. This is the original Squeak VM, written in Slang and transformed
to C. It is heavily optimized and represents our point of comparison.

Squeak VM, Simulated. The Slang code running in the Squeak VM inter-
preting the image is about 1000 times slower. The system is hardly usable
like this, but it is a valuable means to debug the VM with the Smalltalk
tools.

SPy VM in C. The result of our written VM after a week of intensive devel-
opment is not at all bad. It runs at about a tenth the speed of the Squeak
VM. This particular version was translated to C, using PyPy’s generational
GC and profile-guided optimizations.

SPy VM on the CLI. Spy translated to CLI (.NET Common Language In-
frastructure) bytecode and running that on Mono is a significant factor slower
than translating Spy to C. We assume that this is partially due to PyPy’s
CLI backend rendering some RPython constructs inefficiently.

SPy VM, Simulated. This is Spy running untranslated on top of CPython6

(the normal Python interpreter). Similar to running Slang code simulated
on another Squeak, this is unusably slow but very useful for testing and
debugging.

Potato. The VM running on Java is amazingly fast. Certainly this also has
to do with the experience of the author with implementing other Smalltalk
VMs.

Pepsi Smalltalk VM. The Squeak VM written with Pepsi is rather slow. The
reason for this is that the VM is written in a highly dynamic Smalltalk-like
language, which requires a repetition of lookups and message send per single
bytecode in the interpreting VM.

Pepsi Compiler. Eliminating these lookups through the compilation of the
code down to machine language, brings a huge performance boost. Currently
this does not happen automatically through a JIT compiler, but it can be
simulated by compiling the Smalltalk code of our benchmark using the Pepsi
compiler. This removes the interpretation step from the code, but retains the
fully dynamic object model.

OMeta/JS. We ran our OMeta/JS in the Safari Web Browser, as it has one
of the fastest JavaScript engines available. We were amazed that it is in the
same league as the CLI and Pepsi VM.

VisualWorks. VisualWorks is the fastest Smalltalk VM available today. It uses
both sophisticated JIT compiler and memory management technology. The
source code is not publicly available.

Hobbes. Running the benchmark reveals that Hobbes is around 100 times
slower than the original Squeak VM. However, we have to point out that
the Smalltalk-80 user-interface is responsive and comparable in speed to the
machines of that time. A reason for that is certainly that Hobbes is running
on VisualWorks.

6 http://python.org

http://python.org
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5.2 Lines of Code

To give a rough estimate of the comparative complexity of different VM im-
plementations, we included Table 1 with a listing of approximate size of the
respective codebase, measured in thousands of lines of code (KLOC).

As shown in Table 1, Spy’s RPython source is relatively compact. Spy’s
RPython source measures only 2600 lines of code, whereas the Slang source for
Squeak requires 8900, and even the relatively compact Potato VM weighs in at
4700. This provides further evidence that the higher level of abstraction afforded
by RPython is useful for keeping the implementation clean and uncluttered. As
discussed in Section 3, we took advantage of a number of RPython features,
including annotations, exceptions, and post-processing transformations, to sim-
plify the Spy source and to improve performance. Without such features, Spy
would be significantly more complex and more difficult to maintain. Please also
note that although our implementation is fairly complete, there are still missing
parts (see Section 3.4).

6 Future Work

The section discusses future work regarding Spy. Currently Spy lacks support
for several primitives that are needed to make it a realistic replacement of the
original Squeak VM. In particular these are primitives for UI and threading.
With regard to Squeak’s plugin mechanism, we aim to find a way to reuse its
interfacing with external functions so we can avoid redoing the work to interface
with third-party libraries. When this is done Spy should be a slow but usable
replacement for the original Squeak.

Afterwards, we can concentrate on speed optimizations. We plan to imple-
ment some straightforward optimizations in the VM, the most obvious example
being a method cache. The shadow approach described in Section 3 should make

Table 1. Comparison of VM implementations in KLOC

Implementation Language KLOC

Squeak VM Slang 8.9
Squeak VM (translation) C 22.8
Spy VM RPython 2.6
Spy VM (translation) IL 130.4
Spy VM (translation) C 187.7
Hobbes VM Smalltalk 10.0
Potato VM Java 4.7
Pepsi VM Pepsi 10.9
Pepsi VM (translation) C 2.1
OMeta Javascript 1.4
VisualWorks C 174.7
#Smalltalk Smalltalk 7.0
Little Smalltalk C 4.0
Little Smalltalk Java 1.8
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this straightforward, since the shadows of classes are already kept up-to-date au-
tomatically and are thus an obvious place to put a method cache. This should
get rid of the most obvious inefficiencies in the current VM.

An area that the PyPy project is currently researching is the automatic
generation of just-in-time compilers from interpreters using partial evaluation
techniques. The language implementor needs to guide this process with a small
number of hints in the interpreter source code. This already works well for PyPy’s
Python interpreter, where speedups of up to 200 times over normal interpretation
can be achieved for simple integer arithmetic [6]. We hope to be able to apply
these techniques to Spy as well to get a high-speed VM implementation that
could eventually surpass Squeak’s performance. This would allow us to get a just-
in-time compiler with very little effort, while retaining our easy-to-understand
interpreter source code.

While the Spy project specifically tries to use PyPy’s toolchain to implement
a Squeak VM, it would be worthwhile future project to try to apply some of
the ideas of the PyPy project to a pure Squeak setting. This would mean im-
plementing a translation toolchain for a subset of Smalltalk that is higher-level
than Slang and then building a VM in it. Doing that would allow it to evaluate
PyPy’s concepts and to explore the design space for this sort of approach.

7 Conclusion

We have described the implementation details of the Spy project, and pro-
vided benchmark results which we believe demonstrate the potential of the Spy
project: despite the lack of fundamental optimizations such as a method cache,
and the fact that it was coded in a high-level language (complete with garbage
collection and other modern amenities), Spy delivers performance competitive
with or better than other alternative Squeak implementations.

Spy was developed partly as an experiment to see how suitable the PyPy
toolchain would be for a Smalltalk implementation. We found that PyPy is in-
deed a very useful tool for quickly implementing a virtual machine. The fact
that Spy was developed in only one week of development attests to the produc-
tivity boost offered by PyPy. By using a high-level language like RPython, and
in particular one with support for metaprogramming, we were able to reduce er-
rors and eliminate boilerplate code throughout the system. Furthermore, PyPy’s
support for translation aspects enabled us to experiment with systematic, low-
level optimizations, such as tagged integers, easily and without changes to the
interpreter source.

We are confident that with further development, Spy could join Squeak as a
realistic platform for Smalltalk development.
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A Source Code of TinyBenchmarks

Number>>tinyBenchmarks
| t1 t2 r n1 n2 |
n1 := 1.
[ t1 := Time millisecondsToRun: [ n1 benchmarkPrimes ].
t1 < 1000 ] whileTrue: [ n1 := n1 * 2 ].

n2 := 28.
[ t2 := Time millisecondsToRun: [ r := 28 benchFibonacci ].
t2 < 1000 ] whileTrue: [ n2 := n2 + 1 ].

http://codespeak.net/pypy/dist/pypy/doc/index-report.html
http://codespeak.net/pypy/dist/pypy/doc/index-report.html
http://codespeak.net/pypy/dist/pypy/doc/index-report.html
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^ ((n1 * 500000 * 1000) // t1) printString , ’ bytecodes/sec; ’ ,
((r * 1000) // t2) printString , ’ sends/sec’

Number>>benchmarkPrimes
| size flags prime k count |
size := 8190.
1 to: self do: [ :iter |

count := 0.
flags := (Array new: size) atAllPut: true.
1 to: size do: [ :i |

(flags at: i) ifTrue: [
prime := i + 1.
k := i + prime.
[ k <= size ] whileTrue: [

flags at: k put: false.
k := k + prime ].

count := count + 1 ] ] ].
^ count

Number>>benchFibonacci
^ self < 2

ifTrue: [ 1 ]
ifFalse: [

(self - 1) benchmarkFibonacci
+ (self - 2) benchmarkFibonacci + 1 ]

B How to Download and Run the Spy Project

Make sure you are running Python version 2.5 or higher, and checkout the project
from subversion

> svn co http://codespeak.net/svn/pypy/dist pypy-dist
> cd pypy-dist

Now, let’s generate some Squeak VMs. Switch to the translation goal folder
and run the toolchain

> cd pypy/translator/goal
> ./translate.py --gc=generation --batch targettinybenchsmalltalk.py

To run the generated executable:

> ./targettinybenchsmalltalk-c

If you browse the target’s Python file, you’ll find some fixture code together
with a function called entry point(argv). The fixture code is executed before
the toolchain takes over. It may use the full power of Python and is not restricted
to RPython. Then, the toolchain is started up, taking the entry point function
and the fixture’s result as an input, to generate the VM. Therefore, all code
eventually called by the entry point must conform to RPython.
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Are Bytecodes an Atavism? 
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Abstract. The notion of bytecodes can be traced back to the 60's with BCPL O-
codes. These were essentially used to pursue platform independence. Later, with 
Pascal p-codes and Smalltalk bytecodes the objective shifted to the concept of 
virtual machines as precursors to dedicated hardware implementations, 
culminating in Lilith and SOAR. More recently, Java adopted a similar 
approach, but with the advent of efficient JIT-technology, bytecodes resumed 
their role as intermediary representation of programs written in some higher level 
language. It is our conjecture that using bytecodes in this capacity is an atavism, 
a throwback to times where hardware bytecode machines were the ultimate 
target. We suggest that the question of an optimal intermediary representation 
must be raised. In this paper we investigate the exact opposite of the bytecode 
approach: we define an intermediary notation which is as close as possible to the 
semantics of the programming language under consideration. It is then a question 
of applying the correct compiler technology to produce an efficient JIT strategy 
for generating efficient machine code. A more interesting question addressed 
here is whether a virtual machine can be built using this strategy that matches a 
bytecode interpreter in perceived performance, while giving the running program 
much more control over its execution than is the case in the bytecode approach. 
We investigate a totally non-compromise approach, where a unified memory 
architecture is used to host all structures relevant during program execution, 
including program data structures, program representation, interpreter caches and 
runtime stacks. We existentially prove that it is possible to build a virtual 
machine along these lines that can match a bytecode implementation in 
performance while giving much more "self" control to the running program. Two 
cases are presented here: the Pico language and virtual machine which were co-
designed with the unified memory approach in mind, and a Scheme virtual 
machine intended to match the performance of PLT-Scheme. 

Keywords: Virtual machines, bytecodes, interpreters. 

1   A Short History of Bytecodes 

BCPL [1] is possibly the very first programming language adopting what we now call 
bytecodes. This was in 1966 – BCPL has been largely forgotten, except for its role as 
a precursor to the C language. Less well known is the fact that a BCPL compiler 
generates O-code, which is expressed in a lower level instruction set for a fictitious – 
today we would say virtual – computer. O-code programs may then be transformed to 
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machine code for an existing physical computer. This process is intended to facilitate 
portability of a high-level language implementation across diverse platforms. 
Presumably this approach was born from the observation that compilers for high-level 
languages were hard to write, and conversion from one machine code to another 
proved to be considerably easier. This is not necessarily a truism today. 

Arguably one of the most successful applications of the BCPL approach is the 
Portable Pascal system, also known as Pascal-P [2]. Started in 1973, it led to the 
highly successful UCSD Pascal environment, possibly the very first really high level 
programming language available on early personal computers. A Pascal-P compiler 
generated p-code, which was definitely intended to be interpreted: the original 
software distribution contained a Pascal version of a generic interpreter. This was 
probably the first public manifestation of a metacircular system in the context of a 
conventional programming language. 

In the case of Pascal-P and its successor Modula-2 [3], the nature of the intermediary 
representation (the bytecodes) led to the construction of microcode versions of their 
respective interpreters. Western Digital released the Pascal Microengine [4] and Niklaus 
Wirth built the Lilith workstation [5], the hardware of which was capable of directly 
executing Modula-2 m-code. These endeavours were rapidly overtaken by advances in 
hardware and software. On the one hand custom hardware proved incapable of 
matching the performance of generic microprocessors such as the Motorola 68000 and 
the Intel 8086. On the other hand advances in compiler and translator technology 
considerably reduced the effectiveness of microcode based interpretation. 

Possibly the first language to introduce the term bytecode is Smalltalk [6]. Although 
the designers of Smalltalk advocated the use of a virtual machine (i.e. an interpreter), 
they explicitly suggested using a microcode implementation1 for performance reasons. 
Hence the fairly low-level nature of Smalltalk bytecodes2. A microcode version of the 
Smalltalk interpreter was effectively realized in 1987 (see [7]) – but again performance-
wise it proved incapable of competing successfully with the available generic 
microprocessors. Following this insight, the Smalltalk community became instrumental 
in pioneering fundamental optimisations for virtual machine implementations in 
software. To name but a few we refer here to inline caching and just-in-time compilation 
(see for instance [8]), much of which was pioneered in the context of Self [14]. 

Java is today the most widely known language using a virtual machine and its 
associated bytecode is the most deeply investigated virtual instruction set – although 
many other modern machine implementations take a similar approach (Python, Ruby and 
the Microsoft suite, to name but a few). Java bytecodes have also been conceived with a 
possible microcode implementation in mind – with too many resulting hardware 
prototypes to name here. Some of these have managed to take hold – albeit in specifically 
constrained circumstances. It is safe to state that mainstream Java implementations rely 
on a software approach involving a (software based) virtual machine and a just-in-time 

                                                           
1 The microcode store of the ALTO workstation was effectively configured to host part of the 

Smalltalk bytecode interpreter. 
2 By virtue of Smalltalk’s very symple syntax bytecodes and source code aren’t that far : only 

lexical addressing of variables stands in the way of full recovery of Smalltalk source code 
from bytecodes.  
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compiler to solve performance issues. Some Java implementations have selected to 
minimize the role played the bytecode stage and compile to native code as a rule (e.g. the 
Jikes research virtual machine [9]). 

It may be concluded from this short – and necessarily incomplete – history, that in 
the forty or so years since the first appearance of virtual machines, the role of 
bytecodes has hardly evolved. Moreover, the original reasons for defining bytecodes 
close to their counterparts in the real world are no longer necessarily valid. Hence the 
question posed in the title of this paper: are bytecodes an atavism? Or more concretely: 
if they really are a throwback, what would be a more reasonable alternative to low-
level bytecodes as an intermediary representation in a virtual machine approach? This 
will be addressed in the next section. 

2   Virtual Machine Architectures 

The term virtual machine is typically associated with the interpretation of an instruction 
set close to machine code. In the previous section we described how implementing a 
virtual machine moved from a software approach to a microcode approach, and then 
back to a software approach.  

In table 1 on the following page we track the different stages that a program goes 
through when it is executed by its virtual machine. In a typical pre-processing stage, 
the source code is transformed into a syntax tree, driven by an abstract grammar for 
the source language. This syntax tree might be completely internalized and serve as a 
compiler aid only; or it might be rendered explicit to support syntax driven editors or 
reflective capabilities of the source language. In a second stage the syntax tree is 
transformed into virtual machine codes (i.e. bytecodes). The distance traveled (i.e. the 
semantic gap) in going from the first to the second is indicated by ∆1. The third step 
involves the interpretation (indicated by the symbol ∮) of the bytecodes using a 
bytecode interpreter which is itself expressed in the hardware's machine codes. 
Finally, we presume the existence of on-the-fly optimisation that converts bytecode 
sequences into a machine code sequence prior to execution (popularly known as just-
in-time compilation, or JIT). The symbol ∆2 in table 1 denotes the semantic gap 
between the bytecodes and machine code. 

When we try to match current virtual machines with table 1, using the Java VM as 
the primus, we might venture the conclusion that: 

 ∆1 » ∆2 ≈ 0 (1) 

reflecting the fact that Java bytecodes are very closely related to machine code3. This 
of course raises the question of whether another relationship than the one in (1) could 
lead to more interesting virtual machine architectures. The common conviction is that 
performance considerations automatically lead to (1), but no conclusive – other than 
intuitive – evidence for this conjecture is ever offered. 

                                                           
3 Some may object that Java (and other) bytecodes incorporate incorporate features such as 

virtual table support, not available in generic processors. We argue that these still represent 
(non functional) implementation features. 
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Table 1. Program execution using a virtual machine 

 
 
In the next section we will show that an ex absurdo proof of this conjecture is not 

necessarily always true. We shall do so by building an experimental virtual machine 
that pursues the exact opposite of (1), i.e. 

 ∆2 » ∆1 ≈ 04                                                            (2) 

and show that performance levels are not necessarily impaired by the switch from (1) 
to (2). 

Of course (2) corresponds to the conventional view that an interpreter is the direct 
instantiation of the target language's semantics. What is different in our approach is 
the total absence of compromise: we will not increase ∆1 in the name of performance. 
Every interpreter implementation – other than purely educational ones – that we are 
aware of makes allowances for optimisation of internal run-time structures such as 
environments and execution stacks. We will not subject our virtual machine to this. 

The only real constraints driving our design are related to the fact that (any) virtual 
machine will ultimately have to run on the target machine. This impacts the memory 
model – typically requiring automatic memory management to be deployed and the 
runtime model – which requires some kind of support for continuations. Both 
concerns seem unrelated, but in our approach they will of necessity prove to be 
mutually dependent. 

3   The Pico Virtual Machine 

Pico [10] is the name coined for a very compact but expressive language that was co-
designed with a virtual machine that implements the precepts proposed in the 
previous section.  In particular, Pico semantics are conceived without any dominant 
consideration for implementation efficiency. In this section we describe the rationale  
 

                                                           
4 This argument is only valid in cases where ∆1 and ∆2 represent meaningful values. Consider 

as an exception the case of Self, where both the language and the bytecodes are extremely 
simple and closely linked. 
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Table 2. Pico syntactical constructs 

 
 
behind Pico and the architecture of its virtual machine. Subsequently we will discuss 
its relevance to the discussion at hand. 

Pico recognizes 6 disjoint value types: number, fraction, text, table, closure, 
dictionary5, continuation and void. The first three have inline source code representa-
tions. All of them can be the target of the Pico evaluator. A total of 9 constructs shape the 
syntactic structure of Pico. These are enumerated and illustrated in table 2. In addition to 
these, syntactic sugar is provided to denote compound expressions, compound values, 
prefix and infix operators and variable length argument lists. 

Pico semantics, as defined by a three page metacircular evaluator, is to an 
important extent inspired by Scheme semantics. However, a number of significant 
features render Pico different from Scheme: 

• Pico does not have special forms – all corresponding constructs are provided 
as functions; 

• Pico does not have a λ-construct – all functions are explicitly named; 
• Pico functions have first-class argument lists, stored as tables; 
• Pico features call-by-function6 in addition to call-by-value; 
• Pico has first-class environments; 
• All Pico statements, including declarations, are first class Pico expressions; 
• Pico does not use lexical addressing and environments are simple association 

lists; 

other than this, Pico has closures, continuations, static scoping, proper tail recursion, 
i.e. everything that you would expect from a modern dynamic language. Even more 
so than in other languages such as Scheme, every Pico construct that is reasonable to 
build is also possible to build. 

Below we provide an example to give the reader an idea of Pico-style 
programming. The function set is a higher order function with a variable argument 
list, which returns a membership test of the numbers provided as arguments. Tables 
are used to represent ordered nodes in a binary tree: they contain a number and two 

                                                           
5  A dictionary is a first class lexical environment. 
6 A fairly controversial feature which allows argument expressions to be wrapped as a local 

function the header of which is specified by the parameter expression. 
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children. The local functions get and add respectively access and update the tree. 
The tree is initialized by adding all arguments from the first-class argument table held 
in Items. At the end a function member is returned; in Scheme an anonymous 
procedure would be provided, but in Pico we need to name all functions. 
 

set @ Items: 
  { nbr_idx: 1; 
    lft_idx: 2; 
    rgt_idx: 3; 
    get(Item, Node): 
      if(is_table(Node), 
        if(Item > Node[nbr_idx], 
          get(Item, Node[rgt_idx]), 
          get(Item, Node[lft_idx])), 
        Item = Node); 
    add(Item, Node, Thunk(Tree)): 
      if(is_table(Node), 
        if(Item > Node[nbr_idx], 
          add(Item, Node[rgt_idx], Node[rgt_idx]:= Tree), 
          add(Item, Node[lft_idx], Node[lft_idx]:= Tree)), 
        if(Item > Node, 
          Thunk([Node, Node, Item]), 
          if(Item < Node, 
            Thunk([Item, Item, Node])))); 
    if(size(Items) = 0, 
      member(Item): false, 
      { TREE: Items[1]; 
        for(idx: 2, idx<=size(Items), idx:=idx+1, 
          add(Items[idx], TREE, TREE:= Tree)); 
        member(Item): get(Item, TREE) }) } 

 
Note the use of the call-by-function Thunk parameter in the add function. This is an 
example of Pico’s call-by-function parameter binding mode; in Scheme, the caller of 
the add function would have to wrap the argument in a lambda expression. 

The Pico virtual machine7 is built on top of a unified memory model that manages 
tagged, variable-sized memory chunks. Inaccessible chunks are reclaimed by means 
of a (non-conservative) compacting mark-and-sweep garbage collector, which comes 
at the cost of a 1-bit per memory cell overhead. The five page garbage collector is 
implemented using a five step state machine for the sweep phase, and proves to be 
extremely efficient8. 

Possibly the most original contribution of our approach is that literally every run-
time structure of the Pico evaluator is stored using the unified memory model, with 
tags to differentiate between the diverse elements. To wit: 

• Numbers are represented in an inline format9; 
• Fractions are stored in a raw10 chunk; 

                                                           
7  Implemented in C using GCC 4.0. 
8  On a vanilla PC, 100 Mbytes of memory are collected in considerably less than 1 second. 
9 Inspired by the Smalltalk80 virtual machine, using the low order bit in the binary 

representation. 
10 Raw refers to the fact that the chunk content is exempt from garbage collecting. 
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• Text is stored in a raw chunk, using a string pool to eliminate duplicates11; 
• Void is represented as an inline binary zero value;  
• Tables are stored as variable length memory chunks; 
• Closures are stored as  parameter list – body – dictionary triplets; 
• Dictionaries are stored as string – value association lists; 
• Continuations are stored as thread – dictionary pairs; 
• Threads are described in the next paragraph; 
• The abstract grammar instances corresponding to the nine Pico syntactic 

variants in table 2 map to correspondingly tagged chunks; 

this implies that a running Pico program consists of an evolving graph with variable 
arity, tagged nodes and possibly cyclical interconnections. Note that garbage 
collection is equally applicable to conventional program values and to program 
syntax, environments (dictionaries) and run-time stacks (threads). Safeguards are built 
in to protect first-class environments and threads from accidental collection when they 
are embedded in first class closure or continuation values. 

Threads are not explicitly reified in this initial version of Pico – their introduction 
as such is deferred to the eventual introduction of reflective capabilities in Pico. 
Threads actually serve as link between continuations owned by the evaluator, and 
they have the following representation: 

 (3) 

where threadbody refers to the thread's implementation12, threadnext refers to the 
thread's continuation and the threadargument's parametrize the thread. Given that all 
communication between threads happens via the arguments, the Pico evaluator boils 
down to the following procedure: 

evaluate(thread):  
  { threadbody(thread);  
    evaluate(threadnext) } 

 

The nine semantic routines corresponding to the nine entries in table 2 are set to 
assemble interconnecting threads that upon execution produce the desired value and 
side effects in the proper dictionaries. 

In practice, a thread is a linked list that is manipulated by the various C-thunks that 
implement the threadbody's. These thunks can access the arguments held in the top 
thread and push onto, pop from, and replace the top thread chunk. A Pico evaluator is 
a deeply recursive process, part of which uses recursion support in the C-language 
processor. However, all recursive applications of the evaluator which directly impact 
the memory model are expressed using the thread network. Garbage collection is 
preemptively triggered with each thread invocation; the corresponding C-thunk 
should be viewed as a critical section with respect to memory allocation. 

Table 3 gives an idea of the control flow in the continuations that contribute to the 
Pico evaluator. The nodes represent C-thunks and the arrows represent the control  
 

                                                           
11  Pico text is immutable. 
12 At this stage a native C thunk similar to the native C implementation of primitive Pico 

functions. 
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Table 3. The Pico evaluation control flow 

 

Table 4. Pico virtual machine dimensions 

component header LOC code LOC size in Kbytes

Main module 459 341 13

Scanner module 55 377 9

Parser module 15 396 11

Evaluator module 23 1225 13

Printer module 16 783 26

Primitives module 50 2193 52

Dictionary manager 99 40 1

Thread manager 309 384 9

Memory manager 102 203 2  
 

flow between the initial expression ε, and the final result ρ. Edges tagged with an ε-
symbol describe the input of a sub-expression from one thunk to another; those tagged 
with a ρ describe the output of a value. Node labels refer to the names of C functions; 
for instance rET handles the return from a function application and is responsible for 
storing the caller’s environment in the case of a non-tail recursive call. The various 
nodes b** handle all of the parameter binding variants. The t** and i** nodes 
handle tables. sET and dEF speak for themselves. The graph is only included to 
illustrate that a modest 17 thunks suffice to implement the Pico evaluator. 

The dimensions of the complete implementation are given in table 4: slightly over 
7000 lines of code against 136 Kbytes of binary code. These values are inflated due to 
aggressive code unrolling and duplication for performance reasons. Note that the 
lion's share of the code goes to the implementation of the 50 or so primitive functions 
defined in the Pico global dictionary, and that the presence of a pretty-printer for 
debugging purposes explains the printing module's size. 
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Table 5. A simple Pico benchmark 

 

Table 6. Pico benchmark results 

test case PLT Scheme Pico
Quicksort 1.372s 1.237s
Eratosthenes 0.380s 0.366s
Fibonacci 0.436s 0.648s  

 
All in all we can conclude that a Pico virtual machine implemented according to 

the guidelines set out in this section is a very modest piece of software, certainly in 
comparison to what is generally observed; and we call attention to the fact that this 
implementation covers all components of the Pico read-eval-print cycle, with the full 
complement of primitives, and all of the advanced features such as first class closures, 
continuations and tail recursion optimisation.  

We decided to test the Pico implementation against the well-known PLT Scheme 
environment13 [11], first of all because of its bytecode orientation, and secondly 
because the proximity in spirit of Pico to Scheme. We assembled a simple benchmark 
based on three very simple and well-known algorithms: a quicksort of 20000 integers, 
an Eratosthenes sieve of size 50000 and a non-tail recursive computation of the 25th 
Fibonacci number. The corresponding Pico code is shown in table 5 and the Scheme 
code is left to the imagination of the reader. The results14 are listed in table 6 and they 
do not disprove the fact that Pico is a match for PLT Scheme performance-wise. 

In the next section we will list some of the techniques that led to these results 
which we  remind the reader, were obtained in spite of our no-compromise approach.  

4   Some Successful Optimisations 

Two non-mutually exclusive approaches should be considered when meeting the 
demand for optimising a virtual machine implementation. First of all, the (difficult) 
choice in favour of C as an implementation language leads us to the exploitation to 
                                                           
13 To level the playing field, we switched off the JIT stage. 
14 As obtained in [12] in 2004; since then successive releases of PLT Scheme have changed the 

balance somewhat. 
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their fullest extent of optimisation options offered by the selected C language 
development environment15. Second, all efforts must be undertaken to equip the virtual 
machine with domain specific algorithmically inspired optimisations. In the first 
category we mention – without intending to be complete – the following techniques: 

• Selective code duplication: for instance in the thread manager, the basic stack 
operations are duplicated for each possible number of arguments in the thread 
nodes; 

• Implicit code duplication: critical functions are moved to the header files so as to 
improve compiler access to these function's implementation; 

• Static function declarations: static function calls are compiled into simple 
branch instructions; 

• Static tail recursion: in the presence of deeply recursive code, a tail recursive 
style often gives the compiler significant information for optimising the 
generated code; 

• Invariant code permutation: knowledge about frequency of execution of 
particular statements (in for instance then/else clauses of conditionals) can lead 
to optimisations via code interchanges; 

and these can significantly improve the runtime of the virtual machine – or any C-
program for that matter. 

In the second category we will describe three very effective algorithms. The analy-
sis leading to these algorithms is essentially based on the following observations: 

• Although conceptually very clean, the Pico environment structure based on 
dictionaries, i.e. association lists, is very inefficient. In particular, retrieving a 
primitive operation requires the sequential traversal of a list before reaching the 
proper location; 

• The straightforward adoption of a unified memory model carries a penalty: very 
memory intensive actions of the virtual machine, such as thread operations, tend 
to overload the garbage collector; 

• In a similar vein, the allocation of dictionary entries for local variables during 
function application should not count on garbage collection only in order to 
deallocate the occupied storage after the function returns;  

these three categories of actions – and they are only three of several – impact the 
performance of the Pico virtual machine to a significant extent. And even if the Pico 
garbage collector proves to be extremely efficient, this performance drop can only be 
compensated by a significant increase in storage. In the remainder of this section, we list 
the solutions that were adopted in the Pico virtual machine to address these three issues. 
 
First optimization: dictionary caching. 
In table 7 we describe a dictionary cache as implemented in the Pico virtual machine. 
The set of primitive variable entries – some fifty of them – form the common trunk of  
 

                                                           
15 Which in the case of GCC 4.0 are pretty impressive. 
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Table 7. A dictionary cache 

 
 
all dictionaries handled by the Pico evaluator. Since these are created during the 
initialisation of the virtual machine, we can store them in privileged locations, 
invariant to garbage collection. If we store them at equidistant locations, we can even 
use a simple cache vector to guarantee O(1) access to primitive values. Since the top 
of any dictionary only lists the lexically scoped variables before reaching the common 
trunk, this proves to be very effective.  

 
Second optimization: thread caching. 
In table 8 we describe a thread cache as a kind of simple memory management 
system: free lists are maintained per allowable thread node size. This variation in size 
is essentially determined by the number of arguments in (3)16. Every thread push 
operation will retrieve a fresh thread chunk from the appropriate free-list, unless this 
is empty; in  this case memory is explicitly allocated. Every thread pop operation will 
cause the thread chunk to be added to the appropriate free-list, unless the thread 
happens to be caught in a first class continuation17. This optimisation indeed improves 
the performance of the virtual machine, but the most dramatic gain is in storage 
requirements. Introducing a thread cache is the major key to producing a virtual 
machine that can adopt to very tight memory constraints. On the other hand, the cache 
is transparent to the rest of the Pico system, implying that the no-compromise 
principle remains valid. 

 

Third optimization: thread caching. 
Table 9 requires some explanation: it describes the creation and reclamation of 
storage during function application. THREAD refers to the current thread-stack, the  
 

                                                           
16 In the Pico virtual machine threads can have up to 7 arguments. 
17 Indicated by a marker bit in the thread chunk header. 
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Table 8. Thread caching 

 

Table 9. Local dictionary handling 

 
 
top of which contains a return-thread. DICT refers the dictionary (environment) in 
effect immediately before the function was invoked. The rET thread node is made to 
hold the CURRENT and PREVIOUS pointers that delimit the current local scope in the 
current environment. Consequently, these are made to point to the newly allocated 
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environment frame (delimited by cur and prv) in order to evaluate expression in  
the correct environment. The two environment sections are juxtaposed in order to 
illustrate that below the bottom hashed line part of the caller’s and the callee’s bindings 
coexist while above the same line they are shared. Finally, when control returns from 
the function, CURRENT and PREVIOUS are restored and the hatched area can be 
reclaimed — provided it isn’t locked by a closure or a continuation. Table 9 only 
represents one of several possible situations — it is included to provide an idea of  
the complexity of an environment cache for the evaluator. Note that this process is 
more complicated than usual because of Pico’s environment architecture based on 
association lists. 

5   The PicoScheme Virtual Machine 

In this very short section we want to communicate some initial results from an 
experiment that is under way. Using the Pico approach as a model, we conceived a 
Scheme virtual machine called PicoScheme that implements the R5RS [13] standard. 
At the time of writing, following features remain to be implemented: 

• Quasi-quoting; 
• Define-syntax and let-syntax; 
• The full numerical tower; 
• About 40% of less essential primitive functions; 
• Full garbage collection support; 

but all crucial features, including first class closures and continuations and proper tail 
recursion, are in place. This is sufficient to make meaningful comparisons with PLT 
Scheme. 

The PicoScheme virtual machine was conceived, designed and implemented with 
the Pico virtual machine as a model. However, some Scheme-specific mechanisms 
were necessary. As a language, Scheme is not completely without compromises in the 
sense mentioned earlier on in this paper. Let's mention a number of them: 

• Define is not a first-class Scheme form: it is essentially syntactic sugar to 
facilitate the optimisation of environment structures and function application; 

• Some Scheme statements have a different meaning when used in a top-level 
position; 

• Scheme environments are not first class; 
• Special forms are definitely intended to be custom compiled; 

and these impact the architecture of a virtual machine, unless we explicitly do not 
want to use their potential for helping optimise the code. 

We decided to introduce an extra translation step (a compiler in addition to a 
reader) and to opt for lexical addressing. The layout of the PicoScheme virtual 
machine is depicted in table 10. Scheme programs are first read into s-expressions 
which are then compiled to an abstract syntax tree prior to execution. So far nothing 
new. But the abstract grammar which structures program trees is explicitly used as 
instruction set for the virtual machine. Again, all program and runtime structures are  
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Table 10. The PicoScheme virtual machine 

 

Table 11. PicoScheme benchmark results 

test case PLT Scheme PicoScheme

Quicksort 5.210s 5.077s

Eratosthenes 3.589s 2.470s

Fibonacci 6.488s 6.041s  

represented in a single unified memory model, totally in line with the Pico virtual 
machine. And although Scheme variables are converted to lexical addresses, this does 
not necessarily impair the potential for Scheme programs to reflect over their 
structure and behaviour18. 

In its current state, the PicoScheme virtual machine counts about 18000 lines of 
code for 260 Kbytes of binary code; it is expected that completing the implementation 
will require another 5000 lines of code. This is significantly larger than the Pico 
virtual machine, caused by the fact that Scheme has considerably more extensive 
semantics than Pico. This is reflected in the size of the abstract grammar: Pico 
requires only 17 productions, against 43 for PicoScheme. 

We used a similar benchmark to the one in table 6 dating back to 2004; we used 
higher numbers to have longer-running – and presumably more dependable – results. 
We performed a quicksort of 500000 integers, an Eratosthenes sieve of size 5000000 
and a non-tail recursive computation of the 35th Fibonacci number. Tests were 
performed on a 2.8GHz Core 2 Duo Intel processor with sufficient memory to avoid 
triggering the garbage collector. The PicoScheme virtual machine was compiled using 
GCC 4.0 using -O3 code optimisation. We used version 372 of PLT Scheme and 
disabled debugging19, profiling and JIT20. 

Table 11 gives the results, indicating a slightly better performance of PicoScheme 
over PLT Scheme. Note that during the development of PicoScheme we stopped 

                                                           
18 Environments are represented as two-level vectors; these vectors are to all intents and 

purposes equivalent to standard Scheme vectors.  
19 Giving PLT Scheme the benefit of the doubt, since the nature of the PicoScheme virtual 

machine implies the default presence of debug information; switching on debugging in PLT 
Scheme results in a performance loss of 130% to 150%. 

20 Activating JIT results in a disappointing 50% to 65% performance gain. 
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optimising the code when we reached PLT Scheme performances. This does not 
imply that PicoScheme cannot be even further optimised.  

6   Conclusions 

In this paper we set out to describe two experiments, which simply stated explore the 
change of view from situation (1) to situation (2). In the first experiment we co-
designed and built from the ground up a language and its virtual machine that 
maximally respects (2). We showed how smart optimisations – which use the full 
extent of knowledge about the language's semantics – can compensate for the intrinsic 
inefficiency of the high level intermediate representation (the bytecodes). In a second 
experiment we took as a reference PLT Scheme, a very popular Scheme virtual 
machine that is implemented using the standard bytecode approach; inspired by Pico 
we built a PicoScheme virtual machine that – the same as PLT Scheme – implements 
R5RS [13]. PicoScheme combines the principles behind statement (2) with the 
language level features and optimisations specific to Scheme. The resulting 
implementation is therefore more extensive than the Pico virtual machine in order to 
support lexical addressing, quasi-quoting, macro's &c. 

The main contribution of this paper – other than producing a virtual machine for Pico 
and a new virtual machine for Scheme – is an indication that it is possible to build 
efficient virtual machines with much more expressive intermediary codes than the 
bytecodes that are generally used. PicoScheme has been optimised to match the 
performance of PLT Scheme; both implement exactly the same language, therefore a 
comparison is meaningful. The initial conclusion is simple: in the absence of a valid 
reason for limiting the level of expressiveness of the virtual machine's instruction set, we 
can endeavour to vary this expressiveness without impacting the overall performance of 
the system. 

What this paper doesn't do is explore the potential of the principle held in (2). It is 
not hard to speculate that a custom virtual machine that maximizes the expressiveness 
of its instruction set for the target language favours reflection – in the meta-
programming sense – of a running program on its execution. At the very least it 
should improve the testing and debugging phase of programming development. These 
are subjects for further research. 

Of course this paper does not do sufficient credit to the effort that has gone into the 
building of the Pico and PicoScheme virtual machines. It should be viewed as a first 
step in publishing the results of a major undertaking. Expect seeing specific results in 
much more detail and of course also expect the various software and other artifacts to 
become available.  

This paper does not propose a universal proof: it doesn’t state that a conventional 
bytecode approach is wrong. It only states that in the absence of justification for using 
low-level bytecodes it is worthwhile investigating the alternatives. Conversely, if one 
considers run-time intervention in the execution of a program, it is probably a good 
idea to avoid intrumenting bytecodes and go for an approach such as advocated here. 

Finally: our apologies to all those who didn't find in this paper the things that they 
expected to see when the topic of virtual machines is covered. We had to leave out a 
lot of material in order to limit the number of pages. All omissions are intentional and 
nobody's responsibility but the author's. 
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